Phase Retrieval via
 Model-Free Power Flow Jacobian Recovery

ACM e-Energy 2023

Samuel Talkington, Santiago Grijalva
June 2023

School of Electrical and Computer Engineering
Georgia Institute of Technology

Table of contents

1. What is the problem?
2. How can we solve it?
3. Analytical Results
4. Computational Results
5. Outlook

What is the problem?

Problem 1:

The case of the missing power network model

The case of the missing power network model

An electric power network is a graph

$$
\mathcal{G}=(\mathcal{N}, \mathcal{V}) .
$$

The case of the missing power network model

Every node $i \in \mathcal{N}$ has a complex voltage phasor and power injection:

$$
v_{i} \angle \theta_{i} \in \mathbb{C}, \quad p_{i}+j q_{i} \in \mathbb{C} .
$$

The case of the missing power network model

The network topology is encoded in the admittance matrix:

$$
Y=G+j B \in \mathbb{C}^{n \times n} .
$$

It is hard to find in the real world.

The case of the missing power network model

The non-linear power flow equations govern the power injections at every node $i \in \mathcal{N}$:

$$
\begin{align*}
& p_{i}=v_{i} \sum_{k=1}^{n} v_{k}\left(G_{i k} \cos \theta_{i k}+B_{i k} \sin \theta_{i k}\right), \tag{1a}\\
& q_{i}=v_{i} \sum_{k=1}^{n} v_{k}\left(G_{i k} \sin \theta_{i k}-B_{i k} \cos \theta_{i k}\right) . \tag{1b}
\end{align*}
$$

The case of the missing power network model

The non-linear power flow equations govern the power injections at every node $i \in \mathcal{N}$:

$$
\begin{align*}
& p_{i}=v_{i} \sum_{k=1}^{n} v_{k}\left(G_{i k} \cos \theta_{i k}+B_{i k} \sin \theta_{i k}\right), \tag{2a}\\
& q_{i}=v_{i} \sum_{k=1}^{n} v_{k}\left(G_{i k} \sin \theta_{i k}-B_{i k} \cos \theta_{i k}\right) . \tag{2b}
\end{align*}
$$

They are functions of the network topology.

Problem 2:

The case of the missing voltage phasor

The case of the missing voltage phasor

Every node $i \in \mathcal{N}$ has a complex voltage phasor and power injection:

$$
v_{i} \angle \theta_{i} \in \mathbb{C}, \quad p_{i}+j q_{i} \in \mathbb{C} .
$$

It's hard to find the voltage phase angles in the real world.

The case of the missing voltage phasor

Only ≈ 3000 phasor measurement units (PMUs) in North America [8]. Rare in:

1. Distribution systems
2. Transmission system boundaries
3. Rural transmission systems
4. Underserved areas

The case of the missing voltage phasor

Example: PJM, circa 2022

1. 400 PMUs throughout PJM territory ${ }^{1}$
2. Only required on substations
[^0]
The case of the missing voltage phasor

Figure 1: circa 2022 PMU deployment in PJM²

[^1]
OK, so who cares?

It's pretty hard to be a power engineer without this information!

Case study: Newton-Raphson Power Flow model

How to solve the non-linear power flow equations?
Classic approach: Newton-Raphson power flow.
Iteratively solve a linear system of equations of the form

$$
\left[\begin{array}{c}
\Delta p \tag{3}\\
\Delta q
\end{array}\right]=\left[\begin{array}{ll}
\frac{\partial p}{\partial \theta}(x) & \frac{\partial p}{\partial v}(x) \\
\frac{\partial q}{\partial \theta}(x) & \frac{\partial q}{\partial v}(x)
\end{array}\right]\left[\begin{array}{c}
\Delta \theta \\
\Delta v
\end{array}\right]=J(x) \Delta x .
$$

1. $\Delta p, \Delta q \in \mathbb{R}^{n}$ are small perturbations in the active and reactive power injections
2. $\Delta \boldsymbol{\theta}, \Delta \boldsymbol{v} \in \mathbb{R}^{n}$ are small perturbations in the voltage phase angles and magnitudes

Case study: Newton-Raphson Power Flow model

$$
\left[\begin{array}{c}
\Delta p \tag{4}\\
\Delta q
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
\frac{\partial p}{\partial \theta}(x) & \frac{\partial p}{\partial v}(x) \\
\frac{\partial q}{\partial \theta}(x) & \frac{\partial q}{\partial v}(x)
\end{array}\right]}_{: J(x)}\left[\begin{array}{c}
\Delta \theta \\
\Delta v
\end{array}\right]=J(x) \Delta x,
$$

1. The matrix $J(x) \in \mathbb{R}^{2 n \times 2 n}$ is the power flow Jacobian matrix.
2. Derivatives of the power flow equations (2) with respect to the voltage magnitudes \boldsymbol{v} and phase angles $\boldsymbol{\theta}$.

Case study: Newton-Raphson Power Flow model

$$
\left[\begin{array}{c}
\Delta p \tag{5}\\
\Delta q
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
\frac{\partial p}{\partial \theta}(x) & \frac{\partial p}{\partial v}(x) \\
\frac{\partial q}{\partial \theta}(x) & \frac{\partial q}{\partial v}(x)
\end{array}\right]}_{:=J(x)}\left[\begin{array}{c}
\Delta \theta \\
\Delta v
\end{array}\right]=J(x) \Delta x,
$$

1. Can we learn this matrix as a proxy model?
2. Can we exploit the structure of this matrix?

What is the problem?

What do we actually know in practice?
Commonly, we receive measurements of the form [9]

$$
v_{i} \in \mathbb{R}, \quad p_{i}+j q_{i} \in \mathbb{C} .
$$

1. v_{i}-voltage magnitude
2. p_{i}-active (real) power
3. q_{i}-reactive (imaginary) power ${ }^{3}$

No network model, either!

[^2]
What is the problem?

1. How can we recover voltage phasors from their magnitudes?
2. How can we recover a phaseless model of the voltage phasors?
3. How can we do this provably?

Contributions

Figure 2: Voltage phasor recovery via power flow Jacobian recovery

How can we solve it?

Classical Phase Retrieval

Given a matrix $A \in \mathbb{C}^{m \times n}$, we want to

$$
\text { find } x \in \mathbb{C}^{n} \quad \text { s.t. } \quad|A x|=b
$$

where $b \in \mathbb{R}^{m}$ are real-valued magnitude measurements.

Classical Phase Retrieval

Example applications:

1. X-ray crystallography [5]
2. Electron microscopy [4]
3. Optical and medical imaging [2]
4. Numerous tasks in experimental physics $[10,7]$
5. ... Power systems?

Connecting phase retrieval and electric power systems

For any voltage magnitudes v, we can represent the phasor voltages $\bar{v} \in \mathbb{C}^{n}$ using a phase vector $u \in \mathbb{C}^{n}$ in the unit complex ball

$$
\begin{equation*}
\left|u_{i}\right|=1, \quad \operatorname{atan} 2\left(\operatorname{Im}\left\{u_{i}\right\}, \operatorname{Re}\left\{u_{i}\right\}\right)=\theta_{i}, \tag{6}
\end{equation*}
$$

where we require

$$
\bar{v}=\operatorname{diag}(v) u=\left[\begin{array}{ccc}
v_{1} & \ldots & 0 \tag{7}\\
\vdots & \ddots & \vdots \\
0 & \ldots & v_{n}
\end{array}\right] u
$$

Connecting phase retrieval and electric power systems

Apply the phase retrieval framework to recover the voltage phase

$$
\begin{equation*}
\text { find } \boldsymbol{\theta} \in(-\pi, \pi]^{n} \quad \text { st: } \quad|\operatorname{diag}(v) u(\theta)|=v . \tag{8a}
\end{equation*}
$$

Analytical Results

Overview of power flow Jacobian structure

Classical power network physics: well known structural symmetries in the power flow Jacobian matrix.

$$
\begin{gather*}
\frac{\partial p_{i}}{\partial \theta_{k}}= \begin{cases}v_{k} \frac{\partial q_{i}}{\partial v_{k}} & i \neq k, \\
-v_{i} \frac{\partial q_{i}}{\partial v_{i}}-2 v_{i}^{2} B_{i i} & i=k .\end{cases} \tag{9a}\\
\frac{\partial q_{i}}{\partial \theta_{k}}= \begin{cases}-v_{k} \frac{\partial p_{i}}{\partial v_{k}} & i \neq k, \\
v_{i} \frac{\partial p_{i}}{\partial v_{i}}-2 v_{i}^{2} G_{i i} & i=k\end{cases} \tag{9b}
\end{gather*}
$$

Relates the Power Flow Jacobian Blocks! ;)

Overview of power flow Jacobian structure

Classical power network physics: well known structural symmetries in the power flow Jacobian matrix [6].

$$
\begin{gather*}
\frac{\partial p_{i}}{\partial \theta_{k}}= \begin{cases}v_{k} \frac{\partial q_{i}}{\partial v_{k}} & i \neq k, \\
-v_{i} \frac{\partial q_{i}}{\partial v_{i}}-2 v_{i}^{2} B_{i i} & i=k .\end{cases} \tag{10a}\\
\frac{\partial q_{i}}{\partial \theta_{k}}= \begin{cases}-v_{k} \frac{\partial p_{i}}{\partial v_{k}} & i \neq k, \\
v_{i} \frac{\partial p_{i}}{\partial v_{i}}-2 v_{i}^{2} G_{i i} & i=k\end{cases} \tag{10b}
\end{gather*}
$$

Need the network model and parameters :

Solution 1:

A phaseless representation of the Power Flow Jacobian matrix.

New characterization of Power Flow Jacobian structure

Lemma 1: Phaseless power flow Jacobian structure

We can write the partial derivatives of power injections with respect to phase angles without the phase angles and without the grid model.

$$
\begin{gather*}
\frac{\partial p_{i}}{\partial \theta_{k}}= \begin{cases}v_{k} \frac{\partial q_{i}}{\partial v_{k}} & i \neq k \\
v_{i} \frac{\partial q_{i}}{\partial v_{i}}-2 q_{i} & i=k\end{cases} \tag{11a}\\
\frac{\partial q_{i}}{\partial \theta_{k}}= \begin{cases}-v_{k} \frac{\partial p_{i}}{\partial v_{k}} & i \neq k \\
-v_{i} \frac{\partial p_{i}}{\partial v_{i}}+2 p_{i} & i=k\end{cases} \tag{11b}
\end{gather*}
$$

These are functions of the power injection measurements!

New characterization of the structure of the Power Flow Jacobian

The power-voltage phase angle sensitivity matrices can be expressed as functions $\frac{\partial p}{\partial \theta}, \frac{\partial q}{\partial \theta}: \mathbb{R}^{n} \times \mathbb{R}^{n} \mapsto \mathbb{R}^{n \times n}$ of the form

$$
\begin{gather*}
\frac{\partial p}{\partial \boldsymbol{\theta}}(v, q)=\operatorname{diag}(v) \frac{\partial q}{\partial v}-2 \operatorname{diag}(q) \tag{12a}\\
\frac{\partial \boldsymbol{q}}{\partial \boldsymbol{\theta}}(v, p)=-\operatorname{diag}(v) \frac{\partial p}{\partial v}+2 \operatorname{diag}(p) \tag{12b}
\end{gather*}
$$

which are implicitly parameterized by $\frac{\partial q}{\partial v}$ and $\frac{\partial p}{\partial v}$.

New characterization of the structure of the Power Flow Jacobian

Figure 3: Equivalence of the Newton-Raphson iterations using the θ-free expressions and standard expressions for $\frac{\partial p}{\partial \boldsymbol{\theta}}, \frac{\partial q}{\partial \boldsymbol{\theta}}$ (right) for a simple two bus test case (left).

Solution 2:

Use the power flow Jacobian structure for voltage phase retrieval

Phase retrieval by the power flow Jacobian

Apply a classic phase retrieval algorithm [11] to solve the power flow equations using learned voltage magnitude blocks

$$
\underset{\Delta \boldsymbol{\theta}_{t},}{\operatorname{minimize}}\left\|\left[\begin{array}{l}
\Delta p_{t} \\
\Delta q_{t}
\end{array}\right]-\left[\begin{array}{cc}
(?) & \frac{\partial p}{\partial v} \\
(?) & \frac{\partial q}{\partial v}
\end{array}\right]\left[\begin{array}{c}
\Delta \boldsymbol{\theta}_{t} \\
\Delta v_{t}
\end{array}\right]\right\|_{2}^{2}
$$

Learning the Jacobian blocks is well studied [3].

Phase retrieval by the power flow Jacobian

Problem! we do not know $\frac{\partial q}{\partial \theta}, \frac{\partial p}{\partial \theta}$
We have to add them as decision variables.

Phase retrieval by the power flow Jacobian

The phase retrieval program for samples $t=1, \ldots$, can then be written as

$$
\underset{\Delta \boldsymbol{\theta}_{t}, \frac{\partial p}{\partial \theta}, \frac{\partial q}{\partial \theta}}{\operatorname{minimize}}\left\|\left[\begin{array}{c}
\Delta p_{t} \\
\Delta \boldsymbol{q}_{t}
\end{array}\right]-\left[\begin{array}{ll}
\frac{\partial p}{\partial \theta}\left(v_{t}, q_{t}\right) & \frac{\partial p}{\partial v} \\
\frac{\partial q}{\partial \theta}\left(v_{t}, p_{t}\right) & \frac{\partial q}{\partial v}
\end{array}\right]\left[\begin{array}{c}
\Delta \boldsymbol{\theta}_{t} \\
\Delta v_{t}
\end{array}\right]\right\|_{2}^{2}
$$

subject to: power flow Jacobian structure!

Solution 3:

Use the power flow Jacobian structure to guarantee voltage phase retrieval

Guaranteed phase retrieval via spectral theory

Long story short:

1. Use the Jacobian structure to show when the voltage phase can be uniquely recovered.
2. Do some linear algebra
3. ???
4. Profit!

Take a look at the paper for more details

Guaranteed phase retrieval via spectral theory

Theorem (Phase retrieval from active power injections)
For a set of buses in a network $\mathcal{B} \subset\{1, \ldots, n\}$, if for every bus $i \in \mathcal{B}$, the reactive power differential inequality

$$
\begin{align*}
\left|q_{i}\right| & >\frac{1}{2} v_{i}\left(\sum_{k \in \mathcal{B} \backslash\{i\}}\left|\frac{\partial q_{k}}{\partial v_{i}}\right|-\left|\frac{\partial q_{i}}{\partial v_{i}}\right|\right) \tag{13a}\\
\text { or } \quad\left|q_{i}\right| & >\frac{1}{2}\left(\sum_{k \in \mathcal{B} \backslash\{i\}} v_{k}\left|\frac{\partial q_{i}}{\partial v_{k}}\right|-v_{i}\left|\frac{\partial q_{i}}{\partial v_{i}}\right|\right), \tag{13b}
\end{align*}
$$

holds, then the voltage phase angles can be uniquely recovered from solely the active power (real) injections p.

Guaranteed phase retrieval via spectral theory

Theorem (Phase retrieval from reactive power injections)

Analogously, if for every bus $i \in \mathcal{B}$, the active power differential inequality

$$
\begin{align*}
\left|p_{i}\right| & >\frac{1}{2} v_{i}\left(\sum_{k \in \mathcal{B} \backslash\{i\}}\left|\frac{\partial p_{k}}{\partial v_{i}}\right|-\left|\frac{\partial p_{i}}{\partial v_{i}}\right|\right) \tag{14a}\\
\text { or } \quad\left|p_{i}\right| & >\frac{1}{2}\left(\sum_{k \in \mathcal{B} \backslash\{i\}} v_{k}\left|\frac{\partial p_{i}}{\partial v_{k}}\right|-v_{i}\left|\frac{\partial p_{i}}{\partial v_{i}}\right|\right), \tag{14b}
\end{align*}
$$

holds, then the voltage phase angles can be uniquely recovered from solely the reactive power (imaginary) injections q.

Jacobian invertibility guarantees

Side note: can also guarantee Jacobian invertibility Jacobian invertibility \Longleftrightarrow No voltage collapse \Longrightarrow Phase retrieval Take a look at the paper for more details

Computational Results

Test case

1. RTS-GMLC network model [1]
2. Open-source
3. Real-world data

How does this compare to classical model-based state estimation?

Comparison with classical state estimation

Figure 4: Impact of (RTS_GMLC) model uncertainty on recovered phase angle relative error vs. measurement noise level. Shaded regions indicate ± 1 standard deviation of the relative errors computed over 20 bootstraps.

Voltage phasor recovery performance

Voltage phasor recovery performance

Figure 5: Voltage phasor recovery by measurement noise level.

How about the matrices?

Power flow Jacobian recovery

Figure 6: Recovery of the power-phase angle submatrices $\frac{\partial p}{\partial \theta}, \frac{\partial q}{\partial \theta}$ of the power flow Jacobian for the RTS_GMLC network via the phase retrieval program.

How about real-time performance?

Real-time voltage phasor recovery performance

Figure 7: Ground truth (blue) and estimated (orange dashed) voltage phase angles at 15 min . granularity, juxtaposed with ground truth 5 min . granularity voltage phase angles (black dots).

Outlook

What do we have?

1. We can recover voltage phasors from their magnitudes
2. We can recover models of voltage phase angles from their magnitudes
3. This can save a lot of money ${ }^{4}$
[^3]
What are the limitations?

1. Bottle necked by measurement frequency (PMUs, milliseconds, other devices, minutes-hours)
2. Bottle necked by measurement type (Reactive power assumptions needed)

Acknowledgement

This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. DGE-1650044. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Thanks for listening

References i

R. Barrows, A. Bloom, A. Ehlen, J. Ikaheimo, J. Jorgenson, D. Krishnamurthy, J. Lau, B. McBennett, M. O'Connell, E. Preston, A. Staid, G. Stephen, and J.-P. Watson.

The IEEE Reliability Test System: A Proposed 2019 Update.
IEEE Transactions on Power Systems, 35(1), July 2019.
Institution: National Renewable Energy Lab. (NREL), Golden, CO (United States) Number: NREL/JA-6A20-71958 Publisher: IEEE.
圊
A. Burvall, U. Lundström, P. A. C. Takman, D. H. Larsson, and H. M. Hertz.
Phase retrieval in X-ray phase-contrast imaging suitable for tomography.
Optics Express, 19(11):10359-10376, May 2011.

References ii

（i）Y．C．Chen，J．Wang，A．D．Domínguez－García，and P．W．Sauer． Measurement－Based Estimation of the Power Flow Jacobian Matrix．
IEEE Transactions on Smart Grid，7（5）：2507－2515，Sept． 2016.
或 J．R．Fienup．
Phase retrieval algorithms：a comparison．
Applied Optics，21（15）：2758－2769，Aug． 1982.
直 R．W．Gerchberg．
A practical algorithm for the determination of phase from image and diffraction plane pictures．
Optik，35：237－246， 1972.
围 J．Grainger and W．Stevenson．
Power Systems Analysis and Design．
McGraw Hill，1st edition，Jan． 1994.

References iii

目
K. Jaganathan, Y. C. Eldar, and B. Hassibi. Phase Retrieval: An Overview of Recent Developments.
In Optical Compressive Imaging, page 34. CRC Press, 1st edition, 2016.
arXiv:1510.07713 [cs, math].M. Kezunovic.

Panel session VII: PMU testing and synchrophasor system life-cycle management.
In International Conference on Smart Grid Synchronized Measurements and Analytics (SGSMA), Split, Croatia, May 2022. IEEE Power and Energy Society and IEEE Instrumentation and Measurement Society.

References iv

囦 J. Peppanen, M. Hernandez, J. Deboever, M. Rylander, and M. J. Reno.
Distribution Load Modeling - Survey of the Industry State, Current Practices and Future Needs.
In 2021 North American Power Symposium (NAPS), pages 1-5, Nov. 2021.
囯 Y. Shechtman, Y. C. Eldar, O. Cohen, H. N. Chapman, J. Miao, and
M. Segev.

Phase Retrieval with Application to Optical Imaging: A contemporary overview.
IEEE Signal Processing Magazine, 32(3):87-109, May 2015.

References v

R
I. Waldspurger, A. d'Aspremont, and S. Mallat. Phase recovery, MaxCut and complex semidefinite programming. Math. Program., 2015.

Backup slides

Background: Gershgorin Circle Theorem

Where are the eigenvalues of a square matrix?

For any matrix $A \in \mathbb{C}^{n \times n}$, by the Gershgorin Circle Theorem the eigenvalues of A are guaranteed to lie in the union of the $i=1, \ldots, n$ Gershgorin $\operatorname{discs} \mathcal{G}_{i}(A)$ of the matrix, i.e.,

$$
\begin{equation*}
\lambda_{i}(A) \in \bigcup_{i=1}^{n} \mathcal{G}_{i}(A), \quad i=1, \ldots, n, \tag{15}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathcal{G}_{i}(A) \triangleq\left\{w \in \mathbb{C}:\left|w-A_{i i}\right| \leq \sum_{k: k \neq i}\left|A_{i k}\right|\right\} \subseteq \mathbb{C} . \tag{16}
\end{equation*}
$$

Classical phase retrieval

Given: $|A x|=b, b \in \mathbb{R}^{m}$, what is $x \in \mathbb{C}^{n}$?
Classical phase retrieval problem:

$$
\begin{align*}
& \min _{x \in \mathbb{C}^{n}, y \in \mathbb{C}^{m}}\|A x-y\|_{2}^{2} \quad \text { s.t. } \quad|y|=b, \tag{17a}\\
& \Longleftrightarrow \min _{x \in \mathbb{C}^{n}, u \in \mathbb{C}^{m}}\|A x-\operatorname{diag}(b) u\| \quad \text { s.t. } \quad|u|=\mathbb{1}, \tag{17b}\\
& \Longleftrightarrow \min _{u \in \mathbb{C}^{m}:\left|u_{i}\right|=1} \forall i \in \llbracket 1, m \rrbracket \tag{17c}\\
& u^{*} M u, \quad \text { s.t. } \quad M=\operatorname{diag}\left(b-A A^{\dagger}\right) \succ 0 .
\end{align*}
$$

for any candidate phase \boldsymbol{u}^{\prime}, note that

$$
\begin{equation*}
\hat{x}=A^{\dagger} \operatorname{diag}(b) u^{\prime}=\left(A^{*} A\right)^{-1} A^{*} \operatorname{diag}(b) u^{\prime} \tag{18}
\end{equation*}
$$

Theorem accuracy

Case	\# PQ Buses	\% Satisfying Thm. 1	$r_{\text {worst }}$
14	9	100.0%	-
24_ieee_rts	13	100.0%	-
ieeee30	24	95.83%	1.4×10^{-14}
RTS_GMLC	40	100.0%	-
118	64	100.0%	-
89pegase	77	94.81%	8.32
ACTIVSg200	162	96.91%	0.088
ACTIVSg500	444	94.37%	3.014
ACTIVSg2000	1608	84.83%	28.31

Table 1: Analysis of Theorem 1 for PQ buses of various test cases

Theorem accuracy

Case	\# PQ Buses	\% Satisfying Thm. ??	$\sigma_{\max }$
14	9	100.0%	0.876
24_ieee_rts	13	100.0%	0.401
ieee30	24	95.83%	1.437
RTS_GMLC	40	100.0%	0.444
118	64	100.0%	0.473
89pegase	77	100%	0.954
ACTIVSg200	162	100%	0.698
ACTIVSg500	444	99.77%	1.090
ACTIVSg2000	1608	99.69%	1.180

Table 2: Analysis of Theorem ?? for PQ buses of various test cases

Distribution networks

Table 3: Verification that the structure expressions of the Lemma hold for multiphase unbalanced networks.

[^0]: ¹PJM, "Synchrophasor Technology Roadmap", 2022.

[^1]: ${ }^{2}$ Credit PJM, "Synchrophasor Technology Roadmap", 2022. Source:

[^2]: ${ }^{3}$ e.g., from a historical or chosen power factor [9]

[^3]: ${ }^{4}$ A PMU installation costs $\$ 40,000-\$ 180,000$ each.
 "Factors affecting PMU installation costs", US Department of Energy, 2014.

