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What is the problem?



Problem 1:
The case of the missing power network model
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The case of the missing power network model

An electric power network is a graph

G = (N ,V).
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The case of the missing power network model

Every node i ∈ N has a complex voltage phasor and power injection:

vi∠θi ∈ C, pi + jqi ∈ C.
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The case of the missing power network model

The network topology is encoded in the admittance matrix:

Y = G+ jB ∈ Cn×n.

It is hard to find in the real world.
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The case of the missing power network model

The non-linear power flow equations govern the power injections at
every node i ∈ N :

pi = vi
n∑
k=1

vk(Gik cos θik + Bik sin θik), (1a)

qi = vi
n∑
k=1

vk(Gik sin θik − Bik cos θik). (1b)

5



The case of the missing power network model

The non-linear power flow equations govern the power injections at
every node i ∈ N :

pi = vi
n∑
k=1

vk(Gik cos θik + Bik sin θik), (2a)

qi = vi
n∑
k=1

vk(Gik sin θik − Bik cos θik). (2b)

They are functions of the network topology.
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Problem 2:
The case of the missing voltage phasor
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The case of the missing voltage phasor

Every node i ∈ N has a complex voltage phasor and power injection:

vi∠θi ∈ C, pi + jqi ∈ C.

It’s hard to find the voltage phase angles in the real world.
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The case of the missing voltage phasor

Only ≈ 3000 phasor measurement units (PMUs) in North America [8].

Rare in:

1. Distribution systems
2. Transmission system boundaries
3. Rural transmission systems
4. Underserved areas
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The case of the missing voltage phasor

Example: PJM, circa 2022

1. 400 PMUs throughout PJM territory1

2. Only required on substations

1PJM, “Synchrophasor Technology Roadmap”, 2022.
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The case of the missing voltage phasor

Figure 1: circa 2022 PMU deployment in PJM2

2Credit PJM, “Synchrophasor Technology Roadmap”, 2022. Source:
https://www.pjm.com/markets-and-operations/ops-analysis/synchrophasor-technology
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OK, so who cares?
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It’s pretty hard to be a power engineer without
this information!
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Case study: Newton-Raphson Power Flow model

How to solve the non-linear power flow equations?

Classic approach: Newton-Raphson power flow.

Iteratively solve a linear system of equations of the form∆p
∆q

 =

 ∂p
∂θ (x)

∂p
∂v (x)

∂q
∂θ (x)

∂q
∂v (x)


∆θ

∆v

 = J(x)∆x. (3)

1. ∆p,∆q ∈ Rn are small perturbations in the active and reactive
power injections

2. ∆θ,∆v ∈ Rn are small perturbations in the voltage phase
angles and magnitudes
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Case study: Newton-Raphson Power Flow model

∆p
∆q

 =

 ∂p
∂θ (x)

∂p
∂v (x)

∂q
∂θ (x)

∂q
∂v (x)


︸ ︷︷ ︸

:=J(x)

∆θ

∆v

 = J(x)∆x, (4)

1. The matrix J(x) ∈ R2n×2n is the power flow Jacobian matrix.
2. Derivatives of the power flow equations (2) with respect to the
voltage magnitudes v and phase angles θ.
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Case study: Newton-Raphson Power Flow model

∆p
∆q

 =

 ∂p
∂θ (x)

∂p
∂v (x)

∂q
∂θ (x)

∂q
∂v (x)


︸ ︷︷ ︸

:=J(x)

∆θ

∆v

 = J(x)∆x, (5)

1. Can we learn this matrix as a proxy model?
2. Can we exploit the structure of this matrix?
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What is the problem?

What do we actually know in practice?

Commonly, we receive measurements of the form [9]

vi ∈ R, pi + jqi ∈ C.

1. vi —voltage magnitude
2. pi —active (real) power
3. qi —reactive (imaginary) power3

No network model, either!

3e.g., from a historical or chosen power factor [9]
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What is the problem?

1. How can we recover voltage phasors from their magnitudes?
2. How can we recover a phaseless model of the voltage phasors?
3. How can we do this provably?
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Contributions

Recover the voltage phasors and the 
full power flow Jacobian...

...from the voltage magnitude 
submatrices and measurements

Magnitude 
Measurements

Voltage 
Mag. 𝒗

Reactive 
Power 𝒒

Voltage 
Angle 𝜽

Active 
Power 𝒑

?

?

?

Figure 2: Voltage phasor recovery via power flow Jacobian recovery
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How can we solve it?



Classical Phase Retrieval

Given a matrix A ∈ Cm×n, we want to

find x ∈ Cn s. t. |Ax| = b.
where b ∈ Rm are real-valued magnitude measurements.
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Classical Phase Retrieval

Example applications:

1. X-ray crystallography [5]
2. Electron microscopy [4]
3. Optical and medical imaging [2]
4. Numerous tasks in experimental physics [10, 7]
5. ... Power systems?
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Connecting phase retrieval and electric power systems

For any voltage magnitudes v, we can represent the phasor voltages
v ∈ Cn using a phase vector u ∈ Cn in the unit complex ball

|ui|= 1, atan2(Im {ui} ,Re {ui}) = θi, (6)

where we require

v = diag(v)u =

v1 . . . 0
... . . . ...
0 . . . vn

u. (7)
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Connecting phase retrieval and electric power systems

Apply the phase retrieval framework to recover the voltage phase

findθ ∈ (−π, π]n st:
∣∣ diag(v)u(θ)∣∣ = v. (8a)
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Analytical Results



Overview of power flow Jacobian structure

Classical power network physics: well known structural symmetries
in the power flow Jacobian matrix.

∂pi
∂θk

=


vk

∂qi
∂vk

i 6= k,

−vi
∂qi
∂vi

− 2v2i Bii i = k.
(9a)

∂qi
∂θk

=


−vk

∂pi
∂vk

i 6= k,

vi
∂pi
∂vi

− 2v2i Gii i = k
(9b)

Relates the Power Flow Jacobian Blocks!
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Overview of power flow Jacobian structure

Classical power network physics: well known structural symmetries
in the power flow Jacobian matrix [6].

∂pi
∂θk

=


vk

∂qi
∂vk

i 6= k,

−vi
∂qi
∂vi

− 2v2i Bii i = k.
(10a)

∂qi
∂θk

=


−vk

∂pi
∂vk

i 6= k,

vi
∂pi
∂vi

− 2v2i Gii i = k
(10b)

Need the network model and parameters
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Solution 1:
A phaseless representation of the Power Flow

Jacobian matrix.
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New characterization of Power Flow Jacobian structure

Lemma 1: Phaseless power flow Jacobian structure
We can write the partial derivatives of power injections with
respect to phase angles without the phase angles and without the
grid model.

∂pi
∂θk

=


vk

∂qi
∂vk

i 6= k

vi
∂qi
∂vi

− 2qi i = k,
(11a)

∂qi
∂θk

=


−vk

∂pi
∂vk

i 6= k

−vi
∂pi
∂vi

+ 2pi i = k.
(11b)

These are functions of the power injection measurements!
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New characterization of the structure of the Power Flow Jacobian

The power-voltage phase angle sensitivity matrices can be expressed
as functions ∂p

∂θ ,
∂q
∂θ : Rn × Rn 7→ Rn×n of the form

∂p
∂θ

(v,q) = diag(v)∂q
∂v − 2 diag(q),

∂q
∂θ

(v,p) = − diag(v)∂p
∂v + 2 diag(p),

(12a)

(12b)

which are implicitly parameterized by ∂q
∂v and

∂p
∂v .
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New characterization of the structure of the Power Flow Jacobian

1.0∠0

Bus 1

j0.1 p.u.

v∠θ

Bus 2

2+ j1 p.u.

Figure 3: Equivalence of the Newton-Raphson iterations using the θ-free
expressions and standard expressions for ∂p

∂θ
, ∂q
∂θ

(right) for a simple two bus
test case (left).

25



Solution 2:
Use the power flow Jacobian structure for

voltage phase retrieval
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Phase retrieval by the power flow Jacobian

Apply a classic phase retrieval algorithm [11] to solve the power flow
equations using learned voltage magnitude blocks

minimize
∆θt,

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∆pt
∆qt

−

(?) ∂p
∂v

(?) ∂q
∂v


∆θt

∆vt


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

2

Learning the Jacobian blocks is well studied [3].
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Phase retrieval by the power flow Jacobian

Problem! we do not know ∂q
∂θ ,

∂p
∂θ

We have to add them as decision variables.
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Phase retrieval by the power flow Jacobian

The phase retrieval program for samples t = 1, . . . , can then be
written as

minimize
∆θt,

∂p
∂θ , ∂q

∂θ

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∆pt
∆qt

−

 ∂p
∂θ (vt,qt)

∂p
∂v

∂q
∂θ (vt,pt)

∂q
∂v


∆θt

∆vt


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

2

subject to: power flow Jacobian structure!
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Solution 3:
Use the power flow Jacobian structure to

guarantee voltage phase retrieval
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Guaranteed phase retrieval via spectral theory

Long story short:

1. Use the Jacobian structure to show when the voltage phase can
be uniquely recovered.

2. Do some linear algebra
3. ???
4. Profit!

Take a look at the paper for more details
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Guaranteed phase retrieval via spectral theory

Theorem (Phase retrieval from active power injections)

For a set of buses in a network B ⊂ {1, . . . ,n}, if for every bus i ∈ B,
the reactive power differential inequality

|qi| >
1
2vi

 ∑
k∈B\{i}

∣∣∣∣∂qk∂vi

∣∣∣∣− ∣∣∣∣∂qi∂vi

∣∣∣∣
 (13a)

or |qi| >
1
2

 ∑
k∈B\{i}

vk
∣∣∣∣ ∂qi∂vk

∣∣∣∣− vi
∣∣∣∣∂qi∂vi

∣∣∣∣
 , (13b)

holds, then the voltage phase angles can be uniquely recovered
from solely the active power (real) injections p.
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Guaranteed phase retrieval via spectral theory

Theorem (Phase retrieval from reactive power injections)
Analogously, if for every bus i ∈ B, the active power differential
inequality

|pi| >
1
2vi

 ∑
k∈B\{i}

∣∣∣∣∂pk∂vi

∣∣∣∣− ∣∣∣∣∂pi∂vi

∣∣∣∣
 (14a)

or |pi| >
1
2

 ∑
k∈B\{i}

vk
∣∣∣∣∂pi∂vk

∣∣∣∣− vi
∣∣∣∣∂pi∂vi

∣∣∣∣
 , (14b)

holds, then the voltage phase angles can be uniquely recovered
from solely the reactive power (imaginary) injections q.
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Jacobian invertibility guarantees

Side note: can also guarantee Jacobian invertibility

Jacobian invertibility ⇐⇒ No voltage collapse =⇒ Phase retrieval

Take a look at the paper for more details
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Computational Results



Test case

1. RTS-GMLC network model [1]
2. Open-source
3. Real-world data
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How does this compare to classical
model-based state estimation?
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Comparison with classical state estimation

Figure 4: Impact of (RTS_GMLC) model uncertainty on recovered phase
angle relative error vs. measurement noise level. Shaded regions indicate
±1 standard deviation of the relative errors computed over 20 bootstraps. 34



Voltage phasor recovery performance
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Voltage phasor recovery performance

Figure 5: Voltage phasor recovery by measurement noise level.
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How about the matrices?
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Power flow Jacobian recovery

Figure 6: Recovery of the power-phase angle submatrices ∂p
∂θ

, ∂q
∂θ

of the
power flow Jacobian for the RTS_GMLC network via the phase retrieval
program.
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How about real-time performance?
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Real-time voltage phasor recovery performance

Figure 7: Ground truth (blue) and estimated (orange dashed) voltage phase
angles at 15 min. granularity, juxtaposed with ground truth 5 min. granularity
voltage phase angles (black dots).
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Outlook



What do we have?

1. We can recover voltage phasors from their magnitudes
2. We can recover models of voltage phase angles from their
magnitudes

3. This can save a lot of money4

4A PMU installation costs $40,000-$180,000 each.
“Factors affecting PMU installation costs”, US Department of Energy, 2014.
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What are the limitations?

1. Bottle necked by measurement frequency (PMUs, milliseconds,
other devices, minutes-hours)

2. Bottle necked by measurement type (Reactive power
assumptions needed)
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Thanks for listening
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Backup slides



Background: Gershgorin Circle Theorem

Where are the eigenvalues of a square matrix?
For any matrix A ∈ Cn×n, by the Gershgorin Circle Theorem the
eigenvalues of A are guaranteed to lie in the union of the
i = 1, . . . ,n Gershgorin discs Gi(A) of the matrix, i.e.,

λi(A) ∈
n⋃
i=1

Gi(A), i = 1, . . . ,n, (15)

where
Gi(A) ≜ {w ∈ C : |w− Aii| ≤

∑
k:k̸=i

|Aik|} ⊆ C. (16)
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Classical phase retrieval

Given: |Ax| = b, b ∈ Rm, what is x ∈ Cn?

Classical phase retrieval problem:

min
x∈Cn,y∈Cm

||Ax− y||22 s.t. |y| = b, (17a)

⇐⇒ min
x∈Cn,u∈Cm

||Ax− diag(b)u|| s.t. |u| = 1, (17b)

⇐⇒ min
u∈Cm:|ui|=1 ∀i∈J1,mKu∗Mu, s.t. M = diag(b− AA†) � 0. (17c)

for any candidate phase u′, note that

x̂ = A† diag(b)u′ = (A∗A)−1A∗ diag(b)u′, (18)
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Theorem accuracy

Case # PQ Buses % Satisfying Thm. 1 rworst
14 9 100.0% —

24_ieee_rts 13 100.0% —
ieee30 24 95.83% 1.4× 10−14

RTS_GMLC 40 100.0% —
118 64 100.0% —

89pegase 77 94.81% 8.32
ACTIVSg200 162 96.91% 0.088
ACTIVSg500 444 94.37% 3.014
ACTIVSg2000 1608 84.83% 28.31

Table 1: Analysis of Theorem 1 for PQ buses of various test cases
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Theorem accuracy

Case # PQ Buses % Satisfying Thm. ?? σmax

14 9 100.0% 0.876
24_ieee_rts 13 100.0% 0.401

ieee30 24 95.83% 1.437
RTS_GMLC 40 100.0% 0.444

118 64 100.0% 0.473
89pegase 77 100% 0.954

ACTIVSg200 162 100% 0.698
ACTIVSg500 444 99.77% 1.090
ACTIVSg2000 1608 99.69% 1.180

Table 2: Analysis of Theorem ?? for PQ buses of various test cases
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Distribution networks

Quantity Value∣∣∣∣∣∣ ∂p∂θ − ∂p
∂θ (v,q)

∣∣∣∣∣∣
F

/∣∣∣∣∣∣ ∂p∂θ ∣∣∣∣∣∣F 2.510× 10−8∣∣∣∣∣∣ ∂q∂θ − ∂q
∂θ (v,p)

∣∣∣∣∣∣
F

/∣∣∣∣∣∣ ∂q∂θ ∣∣∣∣∣∣F 1.725× 10−7

Table 3: Verification that the structure expressions of the Lemma hold for
multiphase unbalanced networks.
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