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Power Factor Control



Description of Power Factor Control

1. Power factor control is the most common reactive power control
method for inverter-based resources (IBRs).

2. A unity power factor control setting is the default of the IEEE
1547-2018 standard on the interconnection and interoperability
of IBRs [1].
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Graphical Depiction of Power Factor Control

Figure 1: Graphical description of inverter power factor control
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Graphical Depiction of Power Factor Control

Figure 2: Real-time inverter power factor control action shot
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The Problems We Are Solving

Problem 1:
1. The power factor control settings of a behind-the-meter inverter
may be unknown or may change over time.

2. This creates unobservable distribution network impacts.
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The Problems We Are Solving

Problem 2:
1. An engineer’s model for a BTM IBR may be inaccurate.
2. It is often difficult to update this model.
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The Problems We Are Solving

Problem 3:
1. Distribution engineers often only observe net load smart meter
data at the BTM IBR interconnection, containing information
about both the IBR generation and the user’s demand,

2. It isn’t obvious what the BTM power factor setting is.
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Parameterized Fixed Power Factor Control

The reactive power injection of an inverter with power factor control
is determined by a line in the complex plane:

qpvt = ϕΘ(ppvt ) =
∆q
∆pp

pv
t (1)

The slope of this line is the “sensitivity” of the IBR reactive power
injections to real power injections.
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Parameterized Fixed Power Factor Control

Use trigonometry to relate the line slope to the power factor setting:

pf = cos(ϕV − ϕI) =⇒ pf = cos

(
atan2

(
∆q
∆p

))
, (2)

where ϕV, ϕI is the phase angle of the voltage and current,
respectively.
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Estimating Behind-the-Meter
Power Factor Control Settings



Smart Meter Data

Distribution engineers often only have access to smart meter data:

Dl = {Xt}Mt=1 = {(vpcct ,pnett ,qnett )}Mt=1, (3)

where:

pnett = ppvt + pnativet

qnett = qpvt + qnativet
(4)

Note:
If we had a separate meter for the IBR, determining power factor
control setting would be trivial.

Question:
From this net load data, can we determine the power factor control
setting of the BTM inverter?
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An Intuitive Solution

Lagging power factor settings:

atan2

(
∆q
∆p

)
< 0, (5)

are typically used to prevent overvoltages from PV systems [4].
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Net Load Percentile Filter

Hypothesis:
1. We can expose the behind-the-meter power factor control curve
by taking the subset of the smart meter data that have “δth
percentile” extreme voltages:

Dδ
l = {Xt ∈ Dl : vpcct > Vδ}, (6)

2. If the voltage is high, the local PV generation must be high and
the load low, so the majority of the net measurement must be
from PV.
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Real Data: Non-Unity Power Factor Control
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Figure 3: Non-unity power factor control: 99th percentile voltage filter
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Real Data: Unity Power Factor Control
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Figure 4: Unity power factor control: 99th percentile voltage filter
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Regression

Perform ordinary least squares regression on the filtered active and
reactive power time series vectors (p̃ and q̃):

Θ̂ = (ATA)−1ATq̃ (7)

where1:

Θ =
[
∆q
∆p b

]T
, and A =


...

...
p̃ 1
...

...

 . (8)

We can now estimate the power factor from net load data.

1Usually we have b = 0.
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Recovering the Power Factor Setting

Power Factor Estimation
Use trigonometry to recover the power factor setting with the
regression slope:

p̂f = cos

(
atan2

(
∆̂q
∆p

))
, (9)

where ϕV, ϕI is the phase angle of the voltage and current,
respectively.
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Making the Estimator More
Robust



Huber Loss

A common way to build robustness to noise is to solve:

minimize
Θ

||q̃− AΘ||1, (10)

where the loss function in (10) is the sum of the absolute value of
the residuals:

||q̃− AΘ||ℓ1 =
M′∑
t=1

|q̃t − aTtΘ|. (11)
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Huber Loss Function

Alternatively, trade off bias and variance with the Huber Loss
Function [3, 2]:

lϵ =
{
||q̃− AΘ||22 ||q̃− AΘ||2 ≤ ϵ

ϵ(||q̃− AΘ||ℓ1 − 1
2ϵ) otherwise

(12)
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Summary and Results



Performance Summary

Table 1: Performance evaluations (MAE) of power factor estimation for 50
real BTM PV systems

PF Control Type ℓ1 Huber, ϵ = 7× 10−2

Unity 0.0000571 0.00343
Non-unity 0.0104 0.0103

Results:
We can estimate unity and non unity PF control settings from net
load data with high accuracy.
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Performance Summary
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Figure 5: Scatter plot of estimated power factor vs. true power factor for all
datasets studied
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