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Motivation and Background



Inverse problems

Inverse problem
Causal system or process

F : X 7→ Y .

True causation x∗, indirect output measurements y, noise η ∼ D

y = F(x∗) + η

Can we recover the causation x∗ of our measurements?
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Complex power physics
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Electric power is complex (literally)

An electric power network is an undirected graph

G = (N ,V).

Every node i ∈ N has a complex voltage phasor and power injection:

vi∠θi ∈ C, pi + jqi ∈ C.
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Power factor and the power triangle

Figure 1: The power triangle relates complex power to the power angle
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Power factor and the power triangle

The power factor αi ∈ (0, 1] ⊂ R at nodes i ∈ N :
Ratio of the real part (active power) of the complex power injection
at i ∈ N to its magnitude:

αi = cos(atan2(qi,pi)), i ∈ N , (1)

where atan2(·, ·) is the two-argument arc tangent.
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Motivation 1: Missing measurements
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The case of the missing voltage phasor

Every node i ∈ N has a complex voltage phasor and power injection:

vi∠θi ∈ C, pi + jqi ∈ C.

It’s hard to find the voltage phase angles in the real world.
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The case of the missing voltage phasor

Example: PJM, circa 2022

1. 400 PMUs throughout PJM territory1

2. Only required on substations

1PJM, “Synchrophasor Technology Roadmap”, 2022.
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The case of the missing voltage phasor

Figure 2: circa 2022 PMU deployment in PJM2

2Credit PJM, “Synchrophasor Technology Roadmap”, 2022. Source:
https://www.pjm.com/markets-and-operations/ops-analysis/synchrophasor-technology
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The case of the missing voltage phasor

≈ 3000 phasor measurement units (PMUs) in North America [1].

Rare in:

1. Distribution systems
2. Transmission system boundaries
3. Rural transmission systems
4. Underserved areas
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Motivation 2: Missing models
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The case of the missing model

Challenge: realistic physical models in electric power systems.

Two types of models are often unknown:

1. Network model: Network topology parameters.
2. Reactive power model: Control law parameters.
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The case of the missing model

The network topology is encoded in the admittance matrix:

Y = G+ jB ∈ Cn×n.

These parameters are difficult to come by in the real world.
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The case of the missing model

The non-linear power flow equations govern the power injections at
every node i ∈ N :

pi = vi
n∑
k=1

vk(Gik cos θik + Bik sin θik), (2a)

qi = vi
n∑
k=1

vk(Gik sin θik − Bik cos θik). (2b)

They are functions of the network topology.
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The case of the missing model

The causal factors for the reactive power injections:

q = f( · |θ),

are the control law parameters θ ∈ Θ. These are often unknown, or
can change over time.
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It’s pretty hard to be a power engineer without
this information!

What do we actually know?
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What do we actually know?

What do we actually know in practice?

Commonly, we receive measurements of the form [2]

vi ∈ R, pi + jqi ∈ C.

1. vi —voltage magnitude
2. pi —active (real) power
3. qi —reactive (imaginary) power3

No network model, either!

3e.g., from a historical or chosen power factor [2]

15/65



Reactive power inverse problems



Problem 1: reactive power system identification

Inverse problem: reactive power system identification
What is the causation (control law parameters) of our reactive
power measurements?

q = F(θ∗) + η
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Control paradigms

There are several reactive power control frameworks:

1. Power factor control: control the relationship between p,q.
2. Volt-VAR control: control the relationship between q, v.
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Graphical Depiction of Power Factor Control

Figure 3: Illustration of real-time inverter power factor control [3].
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Graphical Depiction of Volt-VAR Control

Figure 4: Illustration of real-time inverter volt-VAR control [3].
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Parameterized Fixed Power Factor Control

The reactive power injection of an inverter with power factor control
is determined by a line in the complex plane:

q = ϕΘ(p) =
∆q
∆pp (3)

The slope of this line is the “sensitivity” of the IBR reactive power
injections to real power injections.

20/65



Parameterized Fixed Power Factor Control

Use trigonometry to relate the line slope to the power factor setting:

pf = cos(ϕV − ϕI) =⇒ pf = cos

(
atan2

(
∆q
∆p

))
, (4)

where ϕV, ϕI is the phase angle of the voltage and current,
respectively.
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Parameterized Volt Var Control

For the response of a Volt-VAR control law, a general representation
of the reactive power response is given by a parameterized function
of PCC voltage vpcct ,

ϕΘ(vpcct ) :=



Q1 vpcct ≤ V1,

vpcct
Q2−Q1
V2−V1 + b1 V1 < vpcct < V2,

0 V2 ≤ vpcct ≤ V3,

vpcct
Q4−Q3
V4−V3 + b2 V3 ≤ vpcct ≤ V4,

Q4 vpcct > V4.

(5)

where b1 = Q1 − V1 Q2−Q1V2−V1 and b2 = Q3 − V3 Q4−Q3V4−V3 , and θi := [Pi,Qi]T,
i = 1, . . . ,N.
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Estimating reactive power parameters

minimize
θ

ℓ(P,Q, V|θ) subject to θ ∈ Θ, (6)

where Θ is the set of feasible parameters for the control mode.

Several possible loss functions can be used, such as MLE and
regularized norm approximation losses.
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Fixed power factor system identification result
summary
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Performance Summary

Table 1: Performance evaluations (MAE) of power factor estimation for 50
real BTM PV systems

PF Control Type ℓ1 Huber, ϵ = 7× 10−2

Unity 0.0000571 0.00343
Non-unity 0.0104 0.0103

Results:
We can estimate unity and non unity PF control settings from net
load data with high accuracy.
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Performance Summary
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Figure 5: Scatter plot of estimated power factor vs. true power factor for all
datasets studied
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Volt-VAR system identification result summary
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Performance summary
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Figure 6: Reconstruction of VVC reactive power time series with estimated
control law.
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Phaseless inverse problems



Voltage phase retrieval

Inverse problem: voltage phase retrieval
What are the causal factors (power-phase angle sensitivity
matrices) of our complex power measurements?

p+ jq = F
(
∂p
∂θ

∗
,
∂q
∂θ

∗)
+ η

Corollary: what are the voltage phase angles?
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Case study: Newton-Raphson Power Flow model

How to solve the non-linear power flow equations?

Classic approach: Newton-Raphson power flow.

Iteratively solve a linear system of equations of the form∆p
∆q

 =

 ∂p
∂θ (x)

∂p
∂v (x)

∂q
∂θ (x)

∂q
∂v (x)


∆θ

∆v

 = J(x)∆x. (7)

1. ∆p,∆q ∈ Rn are small perturbations in the active and reactive
power injections

2. ∆θ,∆v ∈ Rn are small perturbations in the voltage phase
angles and magnitudes
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Case study: Newton-Raphson Power Flow model

∆p
∆q

 =

 ∂p
∂θ (x)

∂p
∂v (x)

∂q
∂θ (x)

∂q
∂v (x)


︸ ︷︷ ︸

:=J(x)

∆θ

∆v

 = J(x)∆x, (8)

1. The matrix J(x) ∈ R2n×2n is the power flow Jacobian matrix.
2. Derivatives of the power flow equations (2) with respect to the
voltage magnitudes v and phase angles θ.
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Case study: Newton-Raphson Power Flow model

∆p
∆q

 =

 ∂p
∂θ (x)

∂p
∂v (x)

∂q
∂θ (x)

∂q
∂v (x)


︸ ︷︷ ︸

:=J(x)

∆θ

∆v

 = J(x)∆x, (9)

1. Can we learn this matrix as a proxy model?
2. Can we exploit the structure of this matrix?
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What is the problem?

1. How can we recover voltage phasors from their magnitudes?
2. How can we recover a phaseless model of the voltage phasors?
3. How can we do this provably?
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Solution overview

Recover the voltage phasors and the 
full power flow Jacobian...

...from the voltage magnitude 
submatrices and measurements

Magnitude 
Measurements

Voltage 
Mag. 𝒗

Reactive 
Power 𝒒

Voltage 
Angle 𝜽

Active 
Power 𝒑

?

?

?

Figure 7: Voltage phasor recovery via power flow Jacobian recovery
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New characterization of Power Flow Jacobian structure

Lemma 1: Phaseless power flow Jacobian structure
We can write the partial derivatives of power injections with
respect to phase angles without the phase angles and without the
grid model.

∂pi
∂θk

=


vk

∂qi
∂vk

i 6= k

vi
∂qi
∂vi

− 2qi i = k,
(10a)

∂qi
∂θk

=


−vk

∂pi
∂vk

i 6= k

−vi
∂pi
∂vi

+ 2pi i = k.
(10b)

These are functions of the power injection measurements!
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New characterization of the structure of the Power Flow Jacobian

The power-voltage phase angle sensitivity matrices can be expressed
as functions ∂p

∂θ ,
∂q
∂θ : Rn × Rn 7→ Rn×n of the form

∂p
∂θ

(v,q) = diag(v)∂q
∂v − 2 diag(q),

∂q
∂θ

(v,p) = − diag(v)∂p
∂v + 2 diag(p),

(11a)

(11b)

which are implicitly parameterized by ∂q
∂v and

∂p
∂v .
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New characterization of the structure of the Power Flow Jacobian

1.0∠0

Bus 1

j0.1 p.u.

v∠θ

Bus 2

2+ j1 p.u.

Figure 8: Equivalence of the Newton-Raphson iterations using the θ-free
expressions and standard expressions for ∂p

∂θ
, ∂q
∂θ

(right) for a simple two bus
test case (left).
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Phase retrieval by the power flow Jacobian

Apply a classic phase retrieval algorithm [4] to solve the power flow
equations using learned voltage magnitude blocks

minimize
∆θt,

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∆pt
∆qt

−

(?) ∂p
∂v

(?) ∂q
∂v


∆θt

∆vt


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

2

Learning the Jacobian blocks is well studied [5].
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Phase retrieval by the power flow Jacobian

The phase retrieval program for samples t = 1, . . . , can then be
written as

minimize
∆θt,

∂p
∂θ , ∂q

∂θ

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∆pt
∆qt

−

 ∂p
∂θ (vt,qt)

∂p
∂v

∂q
∂θ (vt,pt)

∂q
∂v


∆θt

∆vt


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

2

subject to: power flow Jacobian structure!
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Use the power flow Jacobian structure to
guarantee voltage phase retrieval
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Guaranteed phase retrieval via spectral theory

Long story short:

1. Use the Jacobian structure to show when the voltage phase can
be uniquely recovered.

2. Use spectral theory to bound the eigenvalues of the full
Jacobian using the phaseless expressions
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Guaranteed phase retrieval via spectral theory

Theorem (Phase retrieval from active power injections)

For a set of buses in a network B ⊂ {1, . . . ,n}, if for every bus i ∈ B,
the reactive power differential inequality

|qi| >
1
2vi

 ∑
k∈B\{i}

∣∣∣∣∂qk∂vi

∣∣∣∣− ∣∣∣∣∂qi∂vi

∣∣∣∣
 (12a)

or |qi| >
1
2

 ∑
k∈B\{i}

vk
∣∣∣∣ ∂qi∂vk

∣∣∣∣− vi
∣∣∣∣∂qi∂vi

∣∣∣∣
 , (12b)

holds, then the voltage phase angles can be uniquely recovered
from solely the active power (real) injections p.
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Guaranteed phase retrieval via spectral theory

Theorem (Phase retrieval from reactive power injections)
Analogously, if for every bus i ∈ B, the active power differential
inequality

|pi| >
1
2vi

 ∑
k∈B\{i}

∣∣∣∣∂pk∂vi

∣∣∣∣− ∣∣∣∣∂pi∂vi

∣∣∣∣
 (13a)

or |pi| >
1
2

 ∑
k∈B\{i}

vk
∣∣∣∣∂pi∂vk

∣∣∣∣− vi
∣∣∣∣∂pi∂vi

∣∣∣∣
 , (13b)

holds, then the voltage phase angles can be uniquely recovered
from solely the reactive power (imaginary) injections q.

41/65



Jacobian invertibility guarantees

Side note: can also guarantee Jacobian invertibility

Jacobian invertibility ⇐⇒ No voltage collapse =⇒ Phase retrieval

Take a look at the paper for more details
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Computational Results



Test case

1. RTS-GMLC network model [6]
2. Open-source
3. Real-world data

43/65



How does this compare to classical
model-based state estimation?
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Comparison with classical state estimation

Figure 9: Impact of (RTS_GMLC) model uncertainty on recovered phase
angle relative error vs. measurement noise level. Shaded regions indicate
±1 standard deviation of the relative errors computed over 20 bootstraps. 44/65



Voltage phasor recovery performance
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Voltage phasor recovery performance

Figure 10: Voltage phasor recovery by measurement noise level.
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How about the matrices?
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Power flow Jacobian recovery

Figure 11: Recovery of the power-phase angle submatrices ∂p
∂θ

, ∂q
∂θ

of the
power flow Jacobian for the RTS_GMLC network via the phase retrieval
program.
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How about real-time performance?
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Real-time voltage phasor recovery performance

Figure 12: Ground truth (blue) and estimated (orange dashed) voltage phase
angles at 15 min. granularity, juxtaposed with ground truth 5 min. granularity
voltage phase angles (black dots).
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Sensitivity matrix recovery

Inverse problem: voltage magnitude sensitivity matrix recovery
What is the causation (voltage magnitude-complex power
sensitivity matrices) of our voltage magnitude measurements?

v = F
(
∂v
∂p

∗
,
∂v
∂q

∗)
+ η
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Voltage magnitude Taylor series expansion.

Construct an underdetermined linearization of the voltage
magnitudes via Taylor Series:

Definition: Voltage magnitude linearization

∆v︸︷︷︸
(|N |×1)

=

[
∂v
∂p

∂v
∂q

]
︸ ︷︷ ︸
(|N |×2|N |)

∆p
∆q


︸ ︷︷ ︸
(2|N |×1)

= |Sx|︸︷︷︸
(|N |×1)

. (14)
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Representing reactive power as an equivalent active power

Given power factors α = [α1, . . . , αn]
T ∈ (0, 1]n of the net complex

power injections at each bus, there exists a matrix function
K(α) : (0, 1]n 7→ Rn×n of the form

K(α) =


± 1

α1

√
1− α21 . . . 0
... . . . ...
0 . . . ± 1

αn

√
1− α2n

 , (15)

such that the reactive power can be written as a parameterized
function of the active power [7]

q as a function of p given α

q(p|α) = K(α)p. (16)
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Graphical Example

Figure 13: Representing q and p as parameterized function of α 51/65



Phaseless sensitivity operator

Use K to construct an equivalent square system.

Definition: phaseless voltage sensitivity operator

∆v︸︷︷︸
(|N |×1)

=
[
∂v
∂p

∂v
∂q

]
︸ ︷︷ ︸
(|N |×2|N |)

[
∆p
∆q

]
︸ ︷︷ ︸
(2|N |×1)

= |Sx|︸︷︷︸
(|N |×1)

=

(
∂v
∂p +

∂v
∂qK(α)

)
︸ ︷︷ ︸

|N |×|N|

∆p︸︷︷︸
|N |

≜ S(α)∆p.
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Solution: show when S(α) is invertible
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Invertibility of phaseless sensitivity operator

Theorem: phaseless observability
Let ∆K := maxi∈N Ki,i − I. Then the complex power injections can be
estimated from the voltage magnitudes if∥∥∥∥M−1∆K∂p

∂θ

∥∥∥∥
2
< 1, (17)

where ‖·‖2 is the largest singular value—the spectral norm or
operator norm—of the argument.
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Theorem characterization

Figure 14: Feasible power factors such that the phaseless observability
Theorem holds for several popular test cases.
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Outlook



What do we have?

We have shown that we can:

1. Recover voltage phasors from their magnitudes
2. Recover complex power injections from voltage magnitudes
3. Recover models of voltage phase angles from their magnitudes
4. Recover the power flow Jacobian blocks and the blocks of its
inverse

This can save a lot of money4

4A PMU installation costs $40,000-$180,000 each.
“Factors affecting PMU installation costs”, US Department of Energy, 2014.
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What are the limitations?

1. Bottle necked by measurement frequency (PMUs, milliseconds,
other devices, minutes-hours)

2. Bottle necked by measurement type (Reactive power
assumptions needed)

3. Needs further incorporation of the non-linearities of the AC
power flow equations.
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Thanks for listening
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Backup slides



Background: Gershgorin Circle Theorem

Where are the eigenvalues of a square matrix?
For any matrix A ∈ Cn×n, by the Gershgorin Circle Theorem the
eigenvalues of A are guaranteed to lie in the union of the
i = 1, . . . ,n Gershgorin discs Gi(A) of the matrix, i.e.,

λi(A) ∈
n⋃
i=1

Gi(A), i = 1, . . . ,n, (18)

where
Gi(A) ≜ {w ∈ C : |w− Aii| ≤

∑
k:k̸=i

|Aik|} ⊆ C. (19)
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Classical phase retrieval

Given: |Ax| = b, b ∈ Rm, what is x ∈ Cn?

Classical phase retrieval problem:

min
x∈Cn,y∈Cm

||Ax− y||22 s.t. |y| = b, (20a)

⇐⇒ min
x∈Cn,u∈Cm

||Ax− diag(b)u|| s.t. |u| = 1, (20b)

⇐⇒ min
u∈Cm:|ui|=1 ∀i∈J1,mKu∗Mu, s.t. M = diag(b− AA†) � 0. (20c)

for any candidate phase u′, note that

x̂ = A† diag(b)u′ = (A∗A)−1A∗ diag(b)u′, (21)
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Theorem accuracy

Case # PQ Buses % Satisfying Thm. 1 rworst
14 9 100.0% —

24_ieee_rts 13 100.0% —
ieee30 24 95.83% 1.4× 10−14

RTS_GMLC 40 100.0% —
118 64 100.0% —

89pegase 77 94.81% 8.32
ACTIVSg200 162 96.91% 0.088
ACTIVSg500 444 94.37% 3.014
ACTIVSg2000 1608 84.83% 28.31

Table 2: Analysis of Theorem 1 for PQ buses of various test cases
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Theorem accuracy

Case # PQ Buses % Satisfying Thm. ?? σmax

14 9 100.0% 0.876
24_ieee_rts 13 100.0% 0.401

ieee30 24 95.83% 1.437
RTS_GMLC 40 100.0% 0.444

118 64 100.0% 0.473
89pegase 77 100% 0.954

ACTIVSg200 162 100% 0.698
ACTIVSg500 444 99.77% 1.090
ACTIVSg2000 1608 99.69% 1.180

Table 3: Analysis of Theorem ?? for PQ buses of various test cases
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Distribution networks

Quantity Value∣∣∣∣∣∣ ∂p∂θ − ∂p
∂θ (v,q)

∣∣∣∣∣∣
F

/∣∣∣∣∣∣ ∂p∂θ ∣∣∣∣∣∣F 2.510× 10−8∣∣∣∣∣∣ ∂q∂θ − ∂q
∂θ (v,p)

∣∣∣∣∣∣
F

/∣∣∣∣∣∣ ∂q∂θ ∣∣∣∣∣∣F 1.725× 10−7

Table 4: Verification that the structure expressions of the Lemma hold for
multiphase unbalanced networks.
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