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Abstract—Incorrect modeling of control characteristics for
inverter-based resources (IBRs) can affect the accuracy of electric
power system studies. In many distribution system contexts, the
control settings for behind-the-meter (BTM) IBRs are unknown.
This paper presents an efficient method for selecting a small
number of time series samples from net load meter data that
can be used for reconstructing or classifying the control settings
of BTM IBRs. Sparse approximation techniques are used to select
the time series samples that cause the inversion of a matrix of
candidate responses to be as well-conditioned as possible. We
verify these methods on 451 actual advanced metering infras-
tructure (AMI) datasets from loads with BTM IBRs. Selecting
60 15-minute granularity time series samples, we recover BTM
control characteristics with a mean error less than 0.2 kVAR.

Index Terms—Advanced inverters, sensor placement, voltage
regulation, convex optimization, sparse representation

I. INTRODUCTION

Behind-the-meter (BTM) inverter-based resources (IBRs)
are poised to have a large impact on distribution grid infras-
tructure and on the methods used for electric power system
studies. In general, the diversity [1] of inverter control settings
can make it difficult to accurately determine the impact that
IBRs may have on a system. In this paper, a technique is
developed to expose unknown IBR control models from net
load advanced metering infrastructure (AMI) data. This is
achieved by finding a sparse representation for the reactive
power time series in a basis of candidate control model
responses.

The presented method is based on the results of [2]-[4],
which develop signal processing techniques for stable recovery
of a signal through a very small number of salient samples
that may be corrupted. Due to the influence of noise and
the native load signal, it is difficult to determine the impact
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of a BTM IBR from net load AMI data using conventional
estimation methods. However, some samples are occasionally
composed mostly of contributions of the IBR. Extracting these
samples provides information about the IBR control “model”
or “curve” ¢g(x¢). The structure of this control model is
defined by a vector of parameters © € R¥. For example, ©
could be the k/2 “knots” of a Volt-VAR curve of the form
(V1,@Q1), ..., (Va,Qy4), as shown in Fig. 1, or the slope of a
fixed power factor line in the complex plane. The control input
x4 is a time series measurement at the load at index ¢ € [[1,m]
(e.g., the voltage, in the case of Volt-VAR).

The contribution of this work is a method to automati-
cally select the samples v C {1,...,m} of historical AMI
measurements that are optimal for identifying a BTM control
model, where the number of these measurements, |v| £ D,
is much smaller than m. The samples selected are ones when
the IBR’s contribution dominates the AMI signal, enabling the
underlying control model to be reconstructed or classified. The
reconstructed control model can then be used to disaggregate
the IBR contribution from the net load signal.

II. BACKGROUND

Recent works have shown that it is possible to recover
reactive power control settings of IBRs from AMI signals, with
data input requirements ranging from voltage magnitudes [5]
to net load data [6]. When using the net load reactive power
measurements directly as in [6], manual tuning of a filter is
required in order to disaggregate the native and IBR reactive
power signals. In contrast, this paper is a generalization of
these methods. Specifically, this paper provides an entirely
unsupervised method to select the most well-conditioned time
series samples for reconstructing these settings based on the
QR decomposition. This method is robust to the presence of
heavy corruption from the native load signal, and removes the
need for manual tuning, as used in [6].

A. Net Load Measurements

Let A/ be the set of all slack and PQ buses in a radial
distribution network. We consider net load voltage, active,
and reactive power time series measurements over a total time
horizon m from an AMI sensor at a bus [ € N:

Dl = (Va pnetv qnet) = {(Utvp;wt7 q?et) ?;1 (1)
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Figure 1. From top to bottom, with ground truths shown in black: a) a set
of candidate Volt-VAR control parameter vectors b) candidate control curves
corresponding to the candidate parameter vectors c) candidate reactive power
time series responses corresponding to the candidate control curves.

Remark (Sign Convention). To make the notation more in-
tuitive, we adopt the convention that injections from a node
into the distribution system are positive and flows from the
distribution system into the load through the AMI are negative.

We assume that g’ € R™ is measured at a bus [ with
a BTM IBR, and define this signal as the sum of the IBR
contribution and the “native” load contribution:

qnet L qibr +qnat (2)

At time ¢, the contribution of the IBR to the AMI-observed
net reactive power signal can be characterized by the parameter
vector © € R*, as shown in Fig. 1.

q’" = [pe(1),. .., Pe(rm)) € R™ 3)

B. IBR Control Basis Functions

Consider a BTM IBR whose reactive power injection is
controlled according to ¢i" = ¢e(x¢), where x; is the
controller input derived from the AMI time series.

For power factor control, this is typically the IBR active
power generation. The reactive power contribution of the IBR
is determined by a sensitivity parameter %, which defines a
linear function in the complex plane fixed at the origin.

A A .
¢ (ﬁzb’“; Ag) = A—g (#1") “)

Fixed power factor control requires the input " to be
the output of a disaggregation algorithm to estimate the

contribution of p**” to the net power signal in (1). There are
many methods to achieve this, such as [7]-[9] and others.

For autonomous Volt-VAR control, the control input is the
PCC voltage, assumed to be measured directly by the AMI
[1]. This control model can be written as (5).

Q1 v < Vi

(0= V) E=L+ Q1 Vi< <V,
po(ve) =40 Va<v, <Vz (5

(0= Vo) Y= +Qs Vs<u <Vi

Q4 v > Vy

C. Compressed Sensing and Sparse Representation

The signal processing techniques of compressed sensing
and sparse representation show that real-world signals are
often able to be reconstructed through a very small number
of measurements [10]-[12]. This technique is based on the
fact that signals are often sparse in a basis representation
W ¢ R™*™, A signal x € R™ is known as being k-sparse in
this basis if it can be written as a linear system of equations
defined by ¥ and a vector s € R™ with £ non-zero entries:

x = Ps (6)

If k£ < n it is possible to reconstruct x with O(klog(n/k))
random measurements. Depending on the randomness of the
measurements and the nature of the basis, this reconstruction
can be near-exact [10], [12], or even exact [11]. Most work in
this area is focused on generalized basis representations, such
as Fourier or wavelet coefficients. Computing these transforms
can be computationally expensive.

III. SPARSE SAMPLING OF AMI TIME SERIES

The problem of disaggregating BTM IBR contributions
from net load reactive power signals can be solved by using
a low-rank basis in a similar form to (6). This relates to
other works such as [8], [9] which have also utilized sparse
representation methods in the context of estimating active
power contributions.

The linear system (6) can be adapted to a tailored basis
W, € R™*" found through the singular value decomposition
(SVD), which we develop in the next section, or another matrix
decomposition method.

A. Low-Rank Representation of AMI Data

Referencing results in sparse sensing such as [2], our
problem can be understood as finding an optimal sparse mea-
surement matrix C € RP*™ which is then used to minimize
the condition number of the linear system (7):

q*“ = CW¥,s =0Os @)

which is given as the ratio of the maximum and minimum
singular values of the matrix.

O(s+€) = ominS + Omaze€ (8)

This causes the inversion of the matrix € to be well-
conditioned and identifies the low-rank coefficients in the



noisy time series q™¢*. This allows us to achieve the goal of
selecting salient time series measurement samples v C [1, m]
that can be used to best approximate the high dimensional
state of the controller output (3). Specifically, we want v to
be the subset of the time series that is primarily composed of
the controller output behavior.

By using the physical definitions of control curves such as
(5) or (4), we can form a basis of candidate control responses
U e R™*":

¥ = | o, (x) do,(x) b, (%) do.(x)| ©

and augment this basis to sample the optimal measurements
for reconstructing or classifying the control model. A control
model reconstructed with these samples will allow q**" and
q"* to be disaggregated in a data-driven manner, without
access to the distribution system model.

The singular value decomposition (SVD) for any complex
valued matrix ¥ € C™*" is given as (10), where U € C™*™,
V € C™*™ are orthonormal matrices, 3 € R™*" is a diagonal
matrix of singular values, and = is the complex conjugate
transpose.

T = UXV* (10)

Using (10), we can form a low-rank basis ¥, € R™*" of
control curves to define a new coordinate system.

Theorem 1 (Low-dimensional control curve basis). The
Eckart-Young Theorem [13] establishes that the rank-r matrix
that optimally approximates ¥ is the solution to the optimiza-
tion problem (11):

¥, = argmin ||¥ — ®||p = UZV* (11)
W rank(¥)=r
Where ||| is the Frobenius norm, X is the first v x

submatrix of 2, and U, V* are the first v columns of U,V

The Eckart-Young Theorem gives a low-rank representation
basis ¥, onto which we project the net load signal q™¢
[2], [3]. The notion of sparsity in a basis of orthogonally
decomposed test signals has proven effective for various signal
reconstruction tasks in many different domains, including
electric power system studies [9], [14].

To select the optimal samples for identifying the control
settings, we seek a linear measurement operator C € RP*™
which is used to find p < m optimal measurement samples,
denoted as ¢! € RP:

¢t = Cx = C¥,s (12)

B. Reconstructing Control Settings

Suppose that a load with a BTM distributed generator is
under study and assume that the presence of an IBR is already
determined.

As shown in Fig. 2, We construct the rank-r tailored basis of
test signals ¥, € R™*" using the SVD. The original design
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Figure 2. Proposed control curve reconstruction scheme showing novel sparse
sampling technique. Once the unknown control type is determined, the AMI
data is evaluated over the family of candidate control curves to form a basis.
The cost-constrained QR factorization is used to select the best samples for
well-conditioned reconstruction in the chosen basis.
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Figure 3. 7 = 15 SVD basis modes for IBR reactive power time series found
using (11) with a Volt-VAR curve family as in (13). Daily rolling average.

matrix W is formed by evaluating with the AMI datab a family
F ={de,,---, 00, } of n candidate control curves:

bo, :R™ > R™ i€ [1,m] (13)

We define the feasible set K as the set of all control
parameters © that satisfy the constraints for one of u control
types, e.g., the set of all valid Volt-VAR knots in the IEEE
1547-2018 standard, or the range of valid fixed unity or
nonunity power factor sensitivities.

K={0:A,6 <biU,...,UA,0 <Db,} (14)

The basis ¥ € R™*™ of candidate control signals is
evaluated using the available AMI time series according to
(9). Assume that ©; € K Vi € [1,n]. For example, K could
be a set of candidate Volt-VAR curve parameters in Fig. 1.

Using (12), our problem can then be understood as finding
the sparsest measurement matrix C € RP*™, where p < m,
that allows us to recover the high dimensional state approxi-
mately from a linear projection of the form of (12). A summary
of this general reconstruction task is shown in Fig. 2.

Suppose that we have confidence that a load has a BTM
IBR using Volt-VAR. In such an instance, ¥, € R™*"
can be a matrix whose columns are orthogonal “eigen-volt-



VAR” response curves that form a new coordinate system for
representing the measurements, as shown in Fig. 3.
IV. RECONSTRUCTION FROM SPARSE SAMPLES

This results in a linear system which represents p elements
of the net load AMI measurements being selected through the
use of W,s. The inverse problem can be written in terms of
the Moore-Penrose pseudoinverse as:

§= 0’[ net (C‘I’ )T net

15)

so, we can write the reconstruction as:

B (C\I,T)—lqnet
- (C‘Ilr)anet

A. Relationship to the QR Factorization

. ifp=r
X =

S
3
w»>

16
ifp>r (16)

The QR factorization decomposes a rectangular matrix
A € R™*™ into the product of a unitary matrix Q and upper-
triangular matrix R and is ubiquitous in linear least squares
and inverse problems.

Referencing [2], [4], [15], the optimal sensors -y, encoded
through C can be found with the QR factorization, with
column pivoting of \Ilz:

v’'cT = QR

For the oversampled case where p > r, which is the case
in our experiments, we have:

(v, ¢ CT =

7)

QR

In summary, the optimal time series sampling problem can
be related to the QR decomposition in the form of (19).

vI'cT =QR
(T, ¢HCT = QR

Applying the cost-constraint QR factorization algorithm in
[4], [16], cost values equal to the net real power are assigned
to weight the samples.

What this does is encourage the selection of the samples
where pf“ < 0, which is intuitive, as the inverter will likely
be regulating voltage when the BTM IBR causes the load to
be a net generator. This causes the QR pivoting algorithm to
balance mathematical factorization error with respecting phys-
ical intuition. In our experiments, this algorithm configuration
results in the selection of samples that are mostly composed of
IBR contributions; approximating the control model response.

(18)

p=r
p>r

19)

B. Identifying Control Models

After selecting the p optimal time series samples for recon-
structing in the selected basis utilizing the QR pivot strategy,
reconstructing the control curve then boils down to an estima-
tion problem. The parameter vector O that best approximates
the samples while satisfying the feasibility constraints (14) in
the least-squares sense is:

= arg mln Z gt — o (vm)]? (20)

20 of 16281 Samples
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Figure 4. Reconstruction error for a single load with unknown Volt-VAR
control settings as a function of the number of SVD basis modes r.

V. EXPERIMENTS

Volt-VAR control has shown promise for at-scale integra-
tion of inverter-based resources due to its voltage regulation
capabilities with superior performance in comparison to fixed
power factor control. For this reason and for brevity, we
validate the method by showing reconstruction performance
for these curves. Much of the sparse sensor placement theory
has been implemented in Python [16], which is useful for
conducting the experiments in this section.

A. Varying the Basis and Number of Basis Modes

The basis ¥,. need not be the solution to (11) but can be
any matrix derived from D;, such as random projections of
the rows of D; or simply an identity matrix multiplied by
the multivariate timeseries formed by D;. We consider all of
these different representations in Fig. 4. We reconstruct the
control model using (20) and calculate the root-mean-square
error (RMSE) of the estimated reactive power injections for
the IBR throughout the year, where all perform with RMSE
values distributed between 0 to 0.15 kVAR for basis modes
r € [1,150]. Considering a fixed number of samples p = 20
to be selected out 16281 possible samples, the variance of the
model can be evaluated by iterating over a range of values of
r, comparing the reconstruction accuracy as shown in Fig. 4.

B. Large Scale Testing

We evaluate the proposed method on 451 actual load
datasets with a BTM IBR. The variation of control parameters
is shown in Fig. 1.a. These loads have a single BTM control
model; handling loads with multiple BTM models remain an
opportunity for future work. We choose p = 60 sensors using
r = 15 basis modes, and the sensors are selected according to
the cost-constrained QR pivot. These parameters were chosen
through a 10-fold cross validation. Across all loads tested,
we reconstruct the high-dimensional BTM reactive power
state with an average RMSE of 0.1937 kVAR. The empirical
distribution of the RMSE values is shown in Fig. 5.

The method selects a small number of samples to provide
accurate reconstruction of the inverter control settings, with
sole reliance on relatively affordable QR factorization and least
squares computations. An example of this is shown in Fig. 6.
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Figure 6. Sparse sampling for p = 60 measurements with the cost
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reconstruction (b) time series sampling.

If ¢o is a function of a signal that is observable by the
AMI, e.g., Volt-VAR or Volt-Watt, the user can disaggregate
the corresponding net active or reactive power signal observed
in (2) at any other time the controller is active—after O is
found using (20) or another method of choice.

gt =y — dg ()

where z,y are the inputs and outputs of ¢g respectively.

vt € [1,m] Q1)

VI. CONCLUSION

We have presented an efficient method for selecting a small
number of time series measurement samples from historical
AMI data that are optimal for identifying an unknown BTM
IBR control model. The method allows the user to avoid the
influence of noise and the native demand signal within the net
AMI data stream. These samples are selected by making a
matrix of candidate responses as well conditioned as possible.
The underlying control model can then be reconstructed or
classified with the chosen samples without need for training
data or a physical model of the network.
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