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Abstract—Advanced solar PV inverter control settings may
not be reported to utilities or may be changed without notice.
This paper develops an estimation method for determining a
fixed power factor control setting of a behind-the-meter (BTM)
solar PV smart inverter. The estimation is achieved using linear
regression methods with historical net load advanced metering
infrastructure (AMI) data. Notably, the BTM PV power factor
setting may be unknown or uncertain to a distribution engineer,
and cannot be trivially estimated from the historical AMI data
due to the influence of the native load on the measurements.
To solve this, we use a simple percentile-based approach for
filtering the measurements. A physics-based linear sensitivity
model is then used to determine the fixed power factor control
setting from the sensitivity in the complex power plane. This
sensitivity parameter characterizes the control setting hidden
in the aggregate data. We compare several loss functions, and
verify the models developed by conducting experiments on 250
datasets based on real smart meter data. The data are augmented
with synthetic quasi-static-timeseries (QSTS) simulations of BTM
PV that simulate utility-observed aggregate measurements at the
load. The simulations demonstrate the reactive power sensitivity
of a BTM PV smart inverter can be recovered efficiently from
the net load data after applying the filtering approach.

Index Terms—net load reactive power disaggregation, voltage
regulation, reactive power control, advanced inverters, data-
driven engineering

I. INTRODUCTION

The rapidly decreasing cost [1] of solar photovoltaics
(PV) and other converter-based resources has prompted the
introduction of advanced inverter control modes of varying
popularity and deployment. In particular, reactive power con-
trol modes have become attractive for voltage regulation to
counteract the inherent volatility of active power injections of
distributed PV. This family of control modes have received
significant attention in both industry and academia due to the
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reactive power priority specification of the IEEE 1547-2018
standard [2] on smart inverters.

Notably, many PV systems are not metered individually,
which makes it difficult to know the precise active and reactive
power injection values of BTM PV. Presently, distribution
planners and operators have a need to ascertain the power
factor control setting of BTM PV for correct operation of the
grid. However, this setting may have never been reported upon
installation; or may change without notice.

II. BACKGROUND

The simplest and most common advanced inverter control
mode is the fixed power factor mode. In this mode the inverter
controller is driven to inject or absorb reactive power such
that a constant power factor setting is maintained at the PV
injection point at all times. To achieve this control objective,
the inverter reactive power output is set to be proportional to
the PV real power output at every time step. This constant
fixed power factor is referred to as the “control setting” or the
“power factor setting”. Because the injection of active power
from the PV system may cause overvoltages [3], lagging power
factor settings are typically used to prevent these overvoltage
conditions, i.e.:

cos(φV − φI) < 0 (1)

where φV , φI are the phase shifts in degrees of the PV line
voltage and current, respectively.

The advantage of this control mode is primarily that of its
simplicity. By default, IEEE 1547-2018 specifies a unity power
factor for the fixed power factor control mode [2], thus not
allowing for any generator voltage impact mitigation [4], [5].

A. Advanced Metering Infrastructure (AMI) Data

In this paper we consider the following net load advanced
metering infrastructure (AMI) data stream:

Dl = {Xt}Mt=1 = {(vpcct , pnett , qnett )}Mt=1 (2)

At timestep t in the dataset (2), vpcct is the voltage magni-
tude measurement at the point of common coupling (PCC),
and pnett , qnett are the net load active and reactive power
measurements. The net power measurements are the additive
combination of the native load demand and the PV generation.



We simulate this by adding together real, 15-minute granular-
ity timeseries smart meter data for customers without BTM
PV and yearlong 15-minute real power measurements from
residential PV systems where PV reactive power is calculated
based on the power factor. We assume that the sign convention
for the PV power contributions is already applied, i.e., that
injections are negative, and absorptions are positive. Therefore,
the net AMI measurements are considered as:

pnett = ppvt + pnatt

qnett = qpvt + qnatt

(3)

Note that a PV system with nonunity power factor control
has VAR-priority, i.e., the real power generated by the PV
system is curtailed when the inverter is operating at full
capacity.

B. Parameterized Fixed Power Factor Control

The results of this paper hinge on a linear regression
method to characterize the control behavior of a smart inverter
operating in the fixed power factor mode. While operating in
this mode, each PV system’s reactive power response qpvt can
be represented entirely by a single slope parameter m = ∆q

∆p ,
which is known as the PV system’s sensitivity of reactive
power injections to real power injections. This sensitivity
differs from voltage magnitude sensitivities, which have shown
good success in estimating other BTM PV parameters [6]–
[8]. If we had perfect access to the PV system’s disaggregated
real power measurements, we could reconstruct [9] the PV
system’s reactive power measurements as:

qpvt = mppvt =
∆q

∆p
ppvt (4)

This sensitivity defines a simple line in the complex power
plane, which maintains cos(φV −φI) for any value of ppvt . The
power factor setting pf can then be readily recovered using the
common definition of the power factor cos(φV − φI):

pf = cos(φV − φI) =⇒ pf = cos

(
arctan

(
∆q

∆p

))
(5)

Additionally, the setting can be recovered with a known PV
apparent power measurement spvt :

pf =
ppvt
||spvt ||2

=⇒ pf =
qpvt

∆q
∆p ||s

pv
t ||2

=
qpvt

m||spvt ||2
(6)

Note that for the typical lagging power factor case, the
sensitivity is less than or equal to zero, and the complex power
line is fixed at the origin.

III. FILTERING NET LOAD AMI DATA

The AMI data contain contributions from both the native
reactive power demand and the reactive power absorbed or
injected by the PV smart inverter. Therefore, it is necessary
to filter the net load AMI measurements in order to more
accurately approximate the power factor control of the PV by
itself.

Algorithm 1: Net Load Data Filter

Result: A subset Dδl of historical AMI dataset Dl that
exposes the approximate behavior of the fixed
power factor control curve.

load dataset Dl;
initialize Dδl = {Xt ∈ Dl : pnett < 0};
remove nighttime measurements in Dδ compute Vδ;
compute Ŝrated;
for Xt in Dl do

if vt > Vδ then
if snett > Ŝrated then

append Xt to Dδ;
else

continue;
end

else
continue;

end
end

A. Extreme Value Filter

Visualization techniques such as those shown in Figures 1
and 2 reveal that historical measurements with abnormally
high voltage magnitude measurements closely approximate
the true control curve. Therefore, we propose the use of a
percentile-based filtering method to help expose the control
sensitivity. This is done by computing percentile values for all
historical voltage measurements at the load. We then form the
filtered dataset Dδl with M ′ samples from the original dataset
Dl by selecting a cutoff percentile value Vδ:

Dδl = {Xt ∈ Dl : vpcct > Vδ} (7)

The experiments in this paper are conducted with AMI
datasets where the BTM PV have relatively high power factors,
0.9 to 1.0 power factor. In extreme scenarios where the power
factor control setting of the PV system is set to lower values,
for example, pf = 0.6, the excess reactive power absorption
during PV production would cause the extreme undervoltages
to best approximate the curve.

For the remainder of the paper, we will denote the filtered
observations as vectors with the symbol .̃, and drop the
subscript l. Specifically, {(ṽt, p̃t, q̃t)}M

′

t=1 = (p̃, q̃, ṽ).
In Algorithm 1, we show our heuristic for finding the filtered

dataset Dδl from the full historical AMI dataset Dl that exposes
the approximate behavior of the fixed power factor control
curve. This is done by considering observations that occur
during δth-percentile extreme overvoltage events.

Experimentally, we have found that observations in the 90th-
99th percentile of historical voltage measurements are often
due primarily to be PV injections.

B. Observations Near Rated PV Size

Note that if the PV apparent power spvt is close to the
rated value of the PV, the fixed power factor control response
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Figure 1. Top: example of a typical scatterplot for a load with BTM PV
operating under fixed nonunity power factor. Each point represents a net load
reactive power and net load real power measurement from a 1 year, 15 minute
sampling interval AMI dataset. Bottom: the same dataset filtered with respect
to extreme overvoltages with a cutoff value of δ = 0.99. The actual PV
measurements are shown in orange.
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Figure 2. Top: example of a typical scatterplot for a load with BTM PV
operating under unity power factor. Bottom: the same dataset filtered with
respect to extreme overvoltages with a cutoff value of δ = 0.99. The actual
PV measurements are shown in orange.

becomes nonlinear as shown in Figs. 1 and 2. However, the
linearization of the control curve remains accurate for values
inside the inverter capability curve [10].

To avoid the nonlinear region, we incorporate an additional
filtering step that discards measurements with net apparent

power that are close to a fraction of the expected PV size Ŝrated
that is set by the user. For the purpose of this paper, we take
up to the 80th percentile of apparent power measurements.

C. Constant Reactive Power Offset

Note that after applying the filtering Algorithm 1, the points
may closely follow the correct reactive power sensitivity,
but may still contain a constant reactive power offset in the
complex power plane.

To counteract this, we form a modified parameter vector as
follows:

Θ =
[

∆q
∆p b

]T
(8)

Where b is the y-axis offset in the complex power plane.
Similarly, we append a column of ones to the data matrix
as follows:

A =


...

...
p̃ 1
...

...

 (9)

The PV reactive power approximation model is then simply
a line in slope-intercept form y = mx+b, and can be written as
q̂pv = AΘ. Note that the PV reactive power timeseries can be
approximately disaggregated from the net load measurements
during the filtered measurement time points:

q̂pv = AΘ =
∆q

∆p
p̃ + b ≈ q̃pv (10)

IV. FIXED POWER FACTOR ESTIMATION

After filtering, the load AMI dataset (7) observations are
primarily composed of the PV contribution in (3), i.e. |ppvt | >
|pnatt | and |qpvt | > |qnatt |, and we assume that the native
contribution can be treated as noise.

Applying equations (4) and (5) allows us to treat the
estimation of the power factor control setting as a linear
regression problem. Then, by using (5), the power factor
control parameter can be recovered entirely through the slope
of the line in the complex power plane (the sensitivity) that
best fits the filtered data. In this section, we will discuss
different ways to find the best slope.

A. The Least Squares Solution

A straightforward method to recover the exposed sensitivity
is to apply ordinary least squares regression. Using the filtered
real and reactive power timeseries vectors p̃ and q̃, the power
factor control setting can be recovered by finding the slope
and intercept in the complex power plane that minimizes the
sum of squares of the residuals:

minimize
Θ

||q̃−AΘ||22 (11)

Which is known to have a unique closed form solution [11]:

(ATA)−1AT q̃ (12)



B. Building Robustness to Outliers

While the least squares regression problem (11) and its
solution (12) is sufficient for many practical scenarios with
the filtering methods that we have outlined, the squared loss
function is overly sensitive to outliers. Because the filtering
method is empirical, the impact of the native reactive power
demand Q̃t on the measurements Qnett may be significant in
practice and may skew or corrupt the true sensitivity hidden
behind the net observations. To address this issue, we develop
robust linear regression models in this section through the use
of several common loss functions.

1) `1 Norm Approximation: Experimentally, we have ob-
served that the noise after pre-processing is often “sparse” in
that there are very few outlier observations in comparison with
the overall power factor trend line after filtering to expose the
sensitivity.

In these scenarios, it is common [12] to set the regression
loss function to be the `1 norm of the residuals, also known
as the “absolute loss”:

minimize
Θ

||q̃−AΘ||`1 (13)

where the loss function in (13) is the sum of the absolute value
of the residuals:

||q̃−AΘ||`1 =

M ′∑
t=1

|q̃t − aTt Θ| (14)

2) Huber Loss Function: The user can trade-off between
the higher variance in (12) and higher bias in (13) by using the
model below in (15), which utilizes the Huber loss function.
This is a statistical tool for reducing the sensitivity of a model
to outliers, typically defined as:

minimize
Θ

lε(q̃, f(Θ)) (15)

Where the Huber loss lε(q̃, f(Θ)) is defined [11], [12] as:

lε =

{
||q̃−AΘ||22 ||q̃−AΘ||2 ≤ ε
ε(||q̃−AΘ||`1 − 1

2ε) otherwise
(16)

The loss function (16) is identical to the squared loss in (11)
for absolute errors less than ε, and is a linear function for errors
greater than ε. Note that as ε → 0, the Huber loss function
becomes similar to `1 norm approximation loss function in
(13). The error threshold value ε is set by the user. Figure 3
shows the tradeoff curves for this parameter and Section V
describes the result.

V. EXPERIMENTAL RESULTS AND PERFORMANCE

Using quasi-static timeseries (QSTS) simulation algorithms
[3], [13], [14], we construct semi-synthetic historical AMI
datasets to verify, test, and compare the models. The AMI
load data used are actual native load active and reactive
measurements from an electric utility. The PV real power
injections are also measurements from actual residential PV
systems at 15-minute granularity for a year. The actual PV
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Figure 3. Estimation error tradeoff curves for the Huber regression loss
function for many values of ε

systems were all installed with unity power factor, so for this
experiment, the power factors of some of the PV systems were
modified. 50 PV systems were modified to non-unity power
factors between 0.9 and 0.99. The PV reactive power for these
systems is calculated based on the measured real power and
the assigned power factor. The net load for each customer is
then the sum of the load and PV measurements. The resulting
voltage is then determined from QSTS power flow solutions.
For additional details on the load modeling used, we refer the
reader to [13].

To evaluate the performance of the model, we use several
error metrics. The first is the mean absolute error (MAE) of
the sensitivity and power factor estimators for the L test loads:

MAE(x̂) =

L∑
l=1

||x̂l − xl||
L

(17)

Where x̂ is the estimated control parameter (either the
sensitivity or power factor) and x is the true parameter.

The second is the mean squared-error (MSE) of the pre-
dicted daytime PV reactive power timeseries using the es-
timated sensitivity parameter. Note that there are two ways
of evaluating this. The first is the “prescient” case, where
we assume to have perfectly disaggregated the M true PV
real power timeseries measurements ppvt , t = 1, . . . ,M from
the net load AMI timeseries, which we then use to compute
the estimated PV reactive power timeseries measurements q̂pvt
using (10).

MSEprescient(Θ̂) =

∑M ′

t=1(m̂ppvt − q̃
pv
t )2

M ′
(18)

The third is the root-mean-squared-deviation, which is in
the same units of the estimated parameter (kVAR) [12]:

RMSEprescient(Θ̂) =

√∑M ′

t=1(m̂ppvt − q̃
pv
t )2

M ′
(19)

Note that these equations only use the estimated reactive
power sensitivity, and do not use the constant reactive power
offset term b̂ (the y-intercept).



Table I
PARAMETER ESTIMATION PERFORMANCE SUMMARY BY MEAN

ABSOLUTE ERROR (MAE)

Algorithm Objective
Type `1 Norm Huber, ε = 7× 10−2

Sensitivity PF Sensitivity PF
Unity 0.00341 0.0000571 0.00343 0.00343

Nonunity 0.0412 0.0104 0.0411 0.0103

Table II
`1 MEAN MODEL PREDICTIVE PERFORMANCE SUMMARY, NONUNITY

POWER FACTOR

Error Evaluation Method
Type Prescient Filtered
MSE 0.0195 0.0506

RMSE (kVAR) 0.0923 0.194

We will also evaluate the “filtered” or “disaggregated”
error performance. By this we mean that we will include
the reactive offset parameter (the Q-axis intercept), and use
the full equation of the best-fitted line in the complex power
plane as an estimate for the PV reactive power. The function is
evaluated with the filtered real power timeseries values p̃t, t =
1, . . . ,M ′. The higher kVAR deviation for the “disaggregated”
calculation is due to the fact that the disaggregation itself
has not been fully solved, in that p̃ in (9) only approximates
the true PV real power generation ppv that drives the control
behavior in actuality, as described in (4).

MSEfiltered(Θ̂) =

∑M ′

t=1(m̂p̃pvt + b̂− q̃pvt )2

M ′
(20)

Similar to (19), we compute the RMSE for the filtered mea-
surements as follows:

RMSEfiltered(Θ̂) =

√∑M ′

t=1(m̂p̃pvt + b̂− q̃pvt )2

M ′
(21)

The Huber regression loss parameter ε described in (16)
is tuned empirically by solving the optimization problem in
(15) for many values of epsilon using [15]. It is found that a
value of ε ≈ 7.05× 10−2 yields the best overall performance
for the datasets we have studied. The tradeoff curves for this
experiment are shown in Fig. 3.

In Figures 4 and 5, we depict the performance of the `1
norm approximation model in (13) for 50 loads with BTM
PV with nonunity power factor control, and for 200 loads with
unity power factor control.

Additionally, Table I shows the mean values of these errors,
and also those of the Huber regression (15). The predictive
performance for the reactive disaggregation using (18)-(21) is
shown in Table II.

In Fig. 6, we show an example reactive power sensitivity fit
for a dataset filtered with percentile cutoff parameter δ = 0.90.
The load contains BTM PV operating under fixed nonunity
power factor. By filtering for the 90th percentile voltage
observations, the reactive power sensitivity becomes exposed
and can be easily estimated.
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Figure 4. Scatterplot of estimated power factor vs. true power factor for all
datasets studied.
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VI. DISCUSSION

There are limitations to the method shown in this paper.
Primarily, it is not trivial to disaggregate the net load reactive
power measurements even if the slope is accurately estimated.
This is because the PV reactive power is a function of the
PV real power, meaning that the net load AMI measurements
would have to be disaggregated a priori in order to construct
the PV reactive power timeseries with the estimated sensitivity.

There are many opportunities for future work in improving
and formalizing the filtering methodology. For instance, our
empirical method for filtering with respect to the capability
curve of the inverter can be improved with the use of a PV
size estimation algorithm, such as the one in [16].

It may also be feasible to construct probabilistic filtering
methods, or incorporate additional feeder model information
to find the most salient observations. With these methods,
the reactive power disaggregation can be improved. This also
creates an opportunity for future work in ensuring that the
methods can generalize to loads that have voltage regulating
equipment.

VII. CONCLUSION

We have presented a linear sensitivity-based method for
distribution engineers or utilities to determine a fixed power
factor control setting from net load, aggregate AMI data. The
linear regression methods and filtering approaches used to
achieve the estimation are simple and interpretable, allowing
for fast and efficient calculations in practice.

In summary, our methods indicate that it is possible to
recover a PV system’s power factor control setting with a mean
absolute error of approximately 0.01 for nonunity power factor
settings, and on the order of 1× 10−4 for unity power factor
settings.
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