
Calculating PV Hosting Capacity in Low-Voltage 

Secondary Networks Using Only Smart Meter Data 

Abstract—Residential solar photovoltaic (PV) systems are 

interconnected with the distribution grid at low-voltage 

secondary network locations. However, computational models of 

these networks are often over-simplified or non-existent, which 

makes it challenging to determine the operational impacts of new 

PV installations at those locations. In this work, a model-free 

locational hosting capacity analysis algorithm is proposed that 

requires only smart meter measurements at a given location to 

calculate the maximum PV size that can be accommodated 

without exceeding voltage constraints. The proposed algorithm 

was evaluated on two different smart meter datasets measuring 

over 2,700 total customer locations and was compared against 

results obtained from conventional model-based methods for the 

same smart meter datasets. Compared to the model-based results, 

the model-free algorithm had a mean absolute error (MAE) of 

less than 0.30 kW, was equally sensitive to measurement noise, 

and required much less computation time. 

Index Terms—advanced metering infrastructure (AMI), data-

driven analysis, hosting capacity analysis, smart meter data. 

I. INTRODUCTION 

Residential solar photovoltaic (PV) systems are becoming 

increasingly prevalent in distribution systems. To ensure that 

new PV installations can be safely and reliably accommodated 

by the grid, a locational PV hosting capacity (HC) analysis can 

be conducted to determine the maximum PV capacity that can 

be installed at various locations on the grid before operational 

constraints are violated or upgrades are required [1]. This type 

of “locational” HC analysis (sometimes referred to as 

integration capacity analysis, or ICA) resembles the detailed 

studies required by some PV interconnection requests. In 

contrast, streamlined [2] and stochastic HC methods [3] 

evaluate the feeder-level impacts of various PV deployment 

scenarios on the medium-voltage (MV) networks, which are 

more useful for planning tasks than facilitating interconnection 

procedures. Residential PV systems are interconnected with the 

distribution grid at low-voltage (LV) secondary network 

locations, and models of these networks are often over-

simplified or non-existent; loads may be lumped together and 

connected directly to the MV primary network, meaning the 

service transformers and secondary network conductors are 

missing. This lack of detail in LV network modeling can lead 

to significant errors in HC results [4]. Even when detailed 

distribution grid models are available and free of other common 

errors that impact HC results [4], model-based locational HC 

are computationally intensive and time-consuming [5].  

With the widespread adoption of advanced metering 

infrastructure (AMI), including smart meters installed at LV 

network locations, many data-driven methods have since been 

proposed to improve grid models [6]. Geographic Information 

Systems (GIS) data has also been leveraged to improve 

secondary modeling for PV HC analysis by applying 

supervised machine learning and logistic regression to predict 

network topologies and conductor types [7]. Data-driven 

distribution analysis methods have also been proposed as faster, 

model-free alternatives. Specifically, some methods leverage 

smart meter data to estimate the feeder-level PV HC using 

Bayesian statistical inference [8] or supervised univariate 

regression modeling [9]. To determine the HC of LV secondary 

networks with model-free methods, the voltage sensitivities to 

active power injections must be extracted. In [10], these 

sensitivities are determined from smart meter data using a 

combination of linear regression and clustering methods, while 

[11] trains a Deep Neural Network (DNN) model to learn the 

sensitivities from smart meter data and predict voltage impacts 

from PV injections for HC analyses. 

However, existing methods for model-free PV HC analysis 

require measurements from multiple smart meters and 

information about the network topology or knowledge of which 

customers are fed through the same service transformer. These 

inputs may not always be available and are susceptible to the 

same common errors that impact the accuracy of model-based 

HC results [4]. Yet, measurements from just a single LV 

network location are often sufficient to approximate the 

linearized voltage sensitivity at that location [12], which 

suggests that PV HC could be calculated for any residential 

customer location with smart meter data available.   

To evaluate this hypothesis, a model-free HC algorithm was 

developed in this paper to extract a linearized voltage sensitivity 

for any LV secondary location with smart meter data available 

and to predict PV impacts that determine HC. Specifically, the 

contributions of this paper include: 1) a novel model-free 

algorithm to calculate the voltage-constrained PV HC at any 

LV network location, 2) validation against conventional model-

based HC results, and 3) a noise sensitivity analysis for each of 

the two methods. 
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II. METHODS 

A novel algorithm was developed to calculate the PV HC 

for any residential behind-the-meter (BTM) PV location on a 

LV secondary network using only measurements of the voltage, 

real power, and reactive power at that location as inputs. While 

this algorithm can be iteratively applied to evaluate multiple 

locations, each location is handled independently, meaning it is 

not intended to determine how much total PV can be installed 

inside a given secondary network or across an entire feeder. 

Rather, the intent is that the proposed algorithm could facilitate 

residential PV interconnection requests by determining ahead 

of time the maximum PV size that can be accommodated at any 

potential BTM PV location.  

Experimentally, the proposed algorithm was evaluated on 

two different utility datasets and the results were compared to 

benchmark model-based locational HC results obtained using 

the same smart meter data as inputs. The analyses were then 

repeated for both methods under increasing levels of 

measurement noise to assess their robustness.  

A. Model-Free HC Algorithm 

The proposed algorithm aims to: 1) estimate the sensitivity 

of voltage magnitude to changes in real power at a customer 

location from its smart meter data, and 2) apply that sensitivity 

to predict the potential voltage impacts of PV power injections 

and determine the HC. These two components of the proposed 

algorithm are presented in Figure 1 and Figure 2, respectively. 

In Figure 1, the algorithm starts by taking in historical real 

power, reactive power, and voltage measurements (i.e., P, Q, 

and V) from the smart meter and calculating the apparent power 

consumption, S, and the power factor, PF. Next, the 

approximate derivatives are computed for each variable by 

taking the difference between adjacent data points in time. 

The algorithm then applies two distinct methods to 

characterize the voltage sensitivity, each with uniquely tuned 

pre-processing steps to adjust for the potential multicollinearity 

of real and reactive power impacts on voltage when power 

factor remains relatively constant. In the left branch of Figure 

1, the algorithm applies the linear surface fit in (1) to extract 

separate voltage sensitivity coefficients for changes in real 

power (σP) and reactive power (σQ). Since HC analysis 

considers PV systems that operate at unity PF, only the σP 

coefficient is of interest. To focus on time points where σP 

would be most apparent, the fit is applied after the input data 

are filtered to remove the bottom 25% of |∆P| values, the 

bottom 10% of |∆PF| values, and the top 1% of |∆V| values. In 

the right branch of Figure 1, the algorithm applies the linear 

curve fit in (2) to extract the voltage sensitivity coefficient for 

changes in apparent power (σS). The fit is applied after the input 

data are filtered to remove the bottom 50% of |∆P| values and 

the top 5% of |∆V| values. Note that the threshold percentages 

for the filtering steps were manually tuned for each method.  

 Δ𝑉 = 𝑐1 + (𝜎𝑃 ∗ Δ𝑃) + (𝜎𝑄 ∗ Δ𝑄) (1) 

 𝛥𝑉 = 𝑐2 + (𝜎𝑆 ∗ 𝛥𝑆) (2) 

After the sensitivity has been estimated by each method, the 

algorithm sets σFinal to either σP or σS. In theory, the σP is more 

precise, but in practice, constant power factor load may cause 

∆P and ∆Q to be too correlated for (1) to accurately parse out 

σP and σQ from the smart meter data available. Thus, σS can be 

selected as a hedge for those scenarios, since the impacts of ∆P 

and ∆Q are captured in ∆S; essentially, this method assumes the 

external impedance at the LV network location has an X/R ratio 

of 1, such that ∆S ≈ ∆P ≈ ∆Q in (2). Since X/R ratios in 

distribution systems are typically low, this method provides a 

reasonable calibration check. In this paper, σS is only selected 

when σP disagrees by more than 30%, since σP was prone to 

extreme outliers.  

 
Figure 1. Procedure for estimating the voltage sensitivity at an LV secondary 

network location from its smart meter data. 

Once σFinal is set, the algorithm moves on to the procedure 

described in Figure 2, where σFinal and the original smart meter 

voltage measurements are used to calculate the maximum real 

power injection, kWmax, that could have been accommodated at 

each time point, t, before exceeding the upper bound voltage 

limit, Vlimit, using (3): 

 𝑘𝑊𝑚𝑎𝑥(𝑡) = (𝑉𝑙𝑖𝑚𝑖𝑡 − 𝑉(𝑡))/𝜎𝐹𝑖𝑛𝑎𝑙 (3) 

Here, Vlimit was set to 1.05 V per unit.  

 
Figure 2. Procedure for applying the voltage sensitivity coefficient to 

determine HC.  

The final step of the algorithm in Figure 2 determines the 

PV HC from kWmax. The phrase “HC criteria” was intended to 

be general, as a variety of HC definitions could be 

accommodated. For example, HC is often calculated based on 

some set of worst-case PV conditions, so one option would be 

to simply take the minimum value of kWmax such that if a PV 

system was outputting that kW value at all time points, the 
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limits would never be exceeded. However, if that minimum 

value occurred at night, it would not make sense to call that the 

PV HC since real power is only generated during the day. For 

this paper, HC is defined as the daytime minimum of kWmax, 

where “daytime” is between 09:00 to 15:00 each day to focus 

on expected peak PV production hours.  

B. Model-Based HC Algorithm 

The model-based HC algorithm implemented in this work 

is similar to conventional methods, such as the CYME ICA 

module [13], but contains modifications for calculating the 

locational HC as a time-series to provide a more appropriate 

benchmark for evaluating the model-free algorithm results. 

Instead of analyzing just a handful of worst-case scenarios, the 

model-based HC algorithm in this work applies yearlong quasi-

static time-series (QSTS) simulations to calculate kWmax at 

every time point for each customer location, then applies the 

same daytime minimum criteria as the model-free algorithm to 

determine the PV HC.  

To address the additional computational burden of this 

modification, a time-wise linear interpolation approach was 

adopted. For each location, full yearlong QSTS simulations 

were conducted for several different values of constant PV 

power injections (0, 5, 10, 20, and 40 kW). Then, when the 

QSTS simulations concluded, kWmax was interpolated from the 

results for every time point. An example of this approach is 

presented in Figure 3 for customer location 1 at t=12:00 p.m. 

on a randomly selected day. The QSTS results for each PV 

injection are represented by the blue diamond markers and Vlimit 

is the horizontal black dotted line at 1.05 per unit. Since the 

response is highly linear, interpolation can be applied to 

determine the value of kWmax(t) = 27.6 kW. This process would 

then be repeated to calculate kWmax for all time points.  

 
Figure 3. Example of linear interpolation approach used in the model-based 

HC analysis. 

C. Test Circuit and Smart Meter Datasets 

A modified version of the EPRI Ckt5 test circuit, shown in 

Figure 4, was utilized in this work. This test circuit has 1,379 

customer locations, denoted as “potential BTM PV” locations 

in Figure 4, for which the HC will be evaluated. Each potential 

BTM PV location is a residential single-phase 240V connection 

at the end of service line that varies from 40 to 180 ft from the 

service transformer. Each location was assigned a real power 

and reactive power time-series profile selected from one of two 

anonymous utility smart meter datasets: Dataset 1 and Dataset 

2. Note that the model-free HC algorithm was developed using 

Dataset 1 and tested on both datasets, without seeing Dataset 2 

ahead of testing. In each dataset, the smart meters recorded 

measurements at 15-minute intervals for a full year (35,040 

time points per measurement). Once the profiles were assigned, 

a baseline QSTS simulation was conducted for Dataset 1 and 

Dataset 2 to generate semi-synthetic voltages for each location. 

This step ensures that the input data for the model-free and 

model-based HC algorithms are identical.  

 
Figure 4. Circuit plot of the modified EPRI Ckt5 test feeder with markers at 

all potential PV locations.  

III. RESULTS  

While the proposed model-free algorithm relies on a linear 

approximation of voltage sensitivity, the true voltage sensitivity 

at a location varies over time. To assess the potential impact of 

this variation on the accuracy of the proposed algorithm, the 

model-based HC results were post-processed to calculate the 

σPmodel values for the whole year at each customer location. As 

an example, the σPmodel time-series for location 1 (Dataset 1) is 

shown in the top subplot of Figure 5, calculated using (4): 

 𝜎𝑃𝑚𝑜𝑑𝑒𝑙 = (𝑉𝑙𝑖𝑚𝑖𝑡 − 𝑉)/𝑘𝑊𝑚𝑎𝑥 (4) 

For reference, this model-based sensitivity calculation method 

is similar to the “perturb and observe” method in [14]. The 

average σPmodel value of 7.46e-4 was then used in (3) instead of 

σFinal to calculate kWmax, and the results are shown in the bottom 

subplot of Figure 5. Compared to the actual kWmax values, the 

average σPmodel resulted in a mean absolute error over all time 

points (MAEt) of 0.40 kW for location 1. After repeating this 

process for all locations, the average MAEt was found to be 

0.33 kW. 

Next, a similar analysis was implemented to assess the 

accuracy of the two sensitivity estimation methods used in the 

model-free HC algorithm in Figure 1. For each location, kWmax 

was calculated separately using the σP and σS, as well as using 

the final combined σFinal selection. These kWmax results were 

then compared to the model-based kWmax results, and the MAEt 

was calculated for each location. The distributions of MAEt 

values per location associated with each model-free sensitivity 

approximation are presented as boxplots in Figure 6. As 



anticipated, using σP resulted in much lower errors than σS for 

most locations but had several extreme outliers. The 

combination of the two methods, σFinal, performed the best by 

correctly selecting σS instead of σP when necessary.  

 
Figure 5. Model-derived σPmodel variation through time for location 1 (top) 

and impact of using mean(σPmodel) to calculate kWmax. 

 
Figure 6. Effect of model-free sensitivity estimations on kWmax.  

Figure 7 presents a comparison of results between the 

model-free and model-based HC algorithms for each smart 

meter dataset. In each plot, the blue circles represent the 

benchmark model-based (x-coordinate) and model-free (y-

coordinate) HC result for each of the 1,379 customer locations. 

The orange diagonal line represents the ideal outcome in which 

the model-free algorithm returns the same value as the model-

based algorithm. In general, many of the results for both 

datasets appear to be near the diagonal, which suggests the 

model-free algorithm provided an accurate result for those 

locations. It should also be noted that the computational time 

required for the model-free algorithm is significantly less than 

that of the model-based algorithm; the model-free HC results 

were generated within minutes, whereas the model-based 

results required multiple days of simulations.  

Table 1 provides a quantitative overview of the model-free 

algorithm’s performance. For Dataset 1 and 2, the MAEHC of 

all locations was 0.26 kW and 0.29 kW, respectively. In other 

words, the proposed algorithm was able to calculate HC within 

300 W—or roughly one PV module—of conventional model-

based methods, on average. Similarly, the model-free algorithm 

results were within 1 kW of the model-based results for 96.6% 

and 95.8% of the customer locations, respectively, for Dataset 

1 and 2. The model-free algorithm did struggle to determine an 

accurate result for some locations, resulting in errors up to 2.84 

kW and 7.65 kW, respectively, for Dataset 1 and 2. Since the 

model-free algorithm utilizes statistical regressions, confidence 

intervals can also be calculated for each result that can be used 

to flag locations with poor fits. 

 
Figure 7. Comparison of model-free vs. model-based HC results.  

TABLE 1. SUMMARY OF MODEL-FREE HC PERFORMANCE FOR ALL 

LOCATIONS IN FIGURE 4 

HC Metric Dataset 1 Dataset 2 

MAEHC 0.26 kW 0.29 kW 

Max. Error 2.84 kW 7.65 kW 

Locations <1kW Error 96.6% 95.8% 

Since the proposed algorithm and the model-based HC 

algorithms both require smart meter data as inputs, it is also 

important to evaluate the impact of measurement noise on the 

accuracy of their results. Therefore, the HC results for each 

dataset were re-calculated after various levels of noise were 

added to the smart meter measurements. For the voltage 

measurements, Gaussian noise masks were generated for each 

location and each dataset using the nominal voltage base as the 

mean, and the standard deviation was set according to various 

meter accuracy classes. For example, a revenue meter with an 

accuracy class of 0.2 requires all measurements to be accurate 

within ±0.2% of the true value [15]. So, since Gaussian noise 

follows a normal distribution, setting the standard deviation of 

noise to 1/3 of the meter accuracy rating (0.067% for the 0.2 

class) ensures that nearly all (99.7%) of the generated noise is 

within the accuracy range of that meter. For clarity, the noise 

sensitivity results are presented in terms of equivalent meter 

class accuracy, or simply “Meter Class”.  

For the model-based HC algorithm, the voltage noise masks 

were added to the QSTS results before the interpolation step 

was initiated. For the model-free HC algorithm, the voltage 

noise was added before any of the data filter steps were 

initiated. In addition, the model-free HC algorithm was also 

evaluated after the noise was added to the real and reactive 

power measurements. In this case, the same noise generation 

procedure was used but the mean value of the noise was set 

equal to the original measurement values. The results from each 

of these three cases in terms of MAEHC are presented in Figure 

8. Figure 9 shows the impact of noise on the ability of each HC 

algorithm to remain within 1 kW accuracy.  

σP σS σFinal
Mean 1.56 kW 2.50 kW 1.49 kW

Max 47.6 kW 11.8 kW 11.3 kW



 
Figure 8. Impact of smart meter accuracy on MAEHC. 

 
Figure 9. Impact of smart meter accuracy on the HC accuracy metric. 

The results in Figure 8 and Figure 9 suggest that both HC 

methods have a high degree of sensitivity to measurement 

noise. However, since model-based HC analysis is already 

widely accepted, the fact that the proposed model-free 

algorithm responds so similarly to measurement noise provides 

validation, nonetheless. Thus, the differences between the 

model-free results and model-based results (∆HC) at each 

location were calculated at each noise level, but the distribution 

of differences was very similar at each level; Figure 10 presents 

these distributions as histograms at two noise levels for Dataset 

1 and Dataset 2. 

 
Figure 10. Histograms of the differences between model-free and model-

based locational HC results with and without measurement noise. 

In practice, even the most robust model-free or model-based 

analysis methods are only ever as accurate as the input data 

allows. There is also evidence that suggests that the noise levels 

analyzed in this paper may have been overly conservative, 

where the standard deviation of noise for class 0.5 meters was 

found to be 0.07% [16] compared to 0.167% used here. 

IV. CONCLUSION 

In this paper, a novel algorithm was presented that 

calculates the local voltage-constrained PV HC for any LV 

secondary network location and requires only smart meter 

measurements for that location. The algorithm was tested on 

actual smart meter datasets from two different utilities and was 

found to be accurate within 0.30 kW of conventional model-

based HC results, on average, while requiring just a fraction of 

the computational time. The proposed algorithm was also 

observed to be equally sensitive to measurement noise as the 

benchmark model-based HC algorithm. Even as the level of 

noise injections increased, errors between the model-free and 

model-based HC results remained consistent. Overall, these 

results suggest that the proposed model-free algorithm provides 

a suitable alternative to existing model-based methods for 

calculating the voltage-constrained PV HC on LV secondary 

networks.  

REFERENCES 

[1] S. Stanfield, Y. Zackai, and M. McKerley, "Key Decisions for Hosting 

Capacity Analyses," IREC, 2021. 

[2] M. Rylander, J. Smith, and W. Sunderman, "Streamlined Method for 

Determining Distribution System Hosting Capacity," IEEE Transactions 

on Industry Applications, vol. 52, no. 1, pp. 105-111, 2016. 

[3] EPRI, "Stochastic Analysis to Determine Feeder Hosting Capacity for 

Distributed Solar PV," EPRI, Technical Report 1026640, 2012. 

[4] J. Azzolini et al., "Improving Behind-the-Meter PV Impact Studies with 

Data-Driven Modeling and Analysis," presented at the IEEE 

Photovoltaic Specialists Conference (PVSC), 2022. 

[5] J. Baranowski et al., "Electric Program Investment Charge (EPIC) Final 

Report," SDGE, 2017. 

[6] M. Reno et al., "IMoFi - Intelligent Model Fidelity: Physics-Based Data-

Driven Grid Modeling to Accelerate Accurate PV Integration Final 

Report," United States, 2022. 

[7] W. Wang et al., "Supervised Learning for Distribution Secondary 

Systems Modeling: Improving Solar Interconnection Processes," IEEE 

Transactions on Sustainable Energy, vol. 13, no. 2, pp. 948-956, 2022. 

[8] R. Lliuyacc-Blas, S. O. Nyberg, M. A. S. T. Ireshika, M. L. Kolhe, and 

P. Kepplinger, "PV Hosting Capacity Estimation in Low Voltage 

Feeders Through Bayesian Statistical Inference," in 2022 12th 

International Conference on Power, Energy and Electrical Engineering 

(CPEEE), 25-27 Feb. 2022 2022, pp. 250-255, doi: 

10.1109/CPEEE54404.2022.9738661.  

[9] A. T. Procopiou, M. Z. Liu, L. F. Ochoa, T. Langstaff, and J. Harding, 

"Smart meter-driven estimation of PV hosting capacity," in CIRED 2020 

Berlin Workshop (CIRED 2020), 22-23 Sept. 2020 2020, vol. 2020, pp. 

128-131, doi: 10.1049/oap-cired.2021.0287.  

[10] G. Valverde, T. Zufferey, S. Karagiannopoulos, and G. Hug, "Estimation 

of voltage sensitivities to power injections using smart meter data," in 

2018 IEEE International Energy Conference (ENERGYCON), 3-7 June 

2018 2018, pp. 1-6, doi: 10.1109/ENERGYCON.2018.8398841.  

[11] V. Bassi, L. Ochoa, and T. Alpcan, "Model-Free Voltage Calculations 

for PV-Rich LV Networks: Smart Meter Data and Deep Neural 

Networks," in 2021 IEEE Madrid PowerTech, 28 June-2 July 2021 2021, 

pp. 1-6, doi: 10.1109/PowerTech46648.2021.9494847.  

[12] S. Weckx, R. D’Hulst, and J. Driesen, "Voltage Sensitivity Analysis of 

a Laboratory Distribution Grid With Incomplete Data," IEEE 

Transactions on Smart Grid, vol. 6, no. 3, pp. 1271-1280, 2015. 

[13] Eaton. "Integration Capacity Analysis." 

https://www.cyme.com/software/cymeica/BR917066EN-ICA.pdf. 

[14] F. Tamp and P. Ciufo, "A Sensitivity Analysis Toolkit for the 

Simplification of MV Distribution Network Voltage Management," 

IEEE Transactions on Smart Grid, vol. 5, no. 2, pp. 559-568, 2014. 

[15] ANSI C12.20-2015 American National Standard for Electricity Meters - 

0.1, 0.2, and 0.5 Accuracy Classes, ANSI, 2015.  

[16] R. Steiner, M. Farrell, S. Edwards, T. Nelson, J. Ford, and S. Sarwat, "A 

NIST Testbed for Examining the Accuracy of Smart Meters under High 

Harmonic Waveform Loads," National Institute of Standards and 

Technology, 2019. doi: https://doi.org/10.6028/NIST.IR.8248. 

 

MAE(∆HC)

0.0 0.29 kW

0.5 0.27 kW

MAE(∆HC)

0.0 0.26 kW

0.5 0.20 kW


	I. Introduction
	II. Methods
	A. Model-Free HC Algorithm
	B. Model-Based HC Algorithm
	C. Test Circuit and Smart Meter Datasets

	III. Results
	IV. Conclusion
	References

